Комбінована перестройка частоти резонаторів з вiдрiзкiв лінії передачі

Автор(и)

  • Сергій Миколайович Літвінцев Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського", Україна https://orcid.org/0000-0002-6171-0036
  • Олександр Віталійович Захаров Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського", Україна https://orcid.org/0000-0002-1222-1623

DOI:

https://doi.org/10.20535/S0021347023030019

Ключові слова:

критична частота, вхідна провiднiсть, обмеження дiапазонностi, настроюваний резонатор, діапазон перестройки

Анотація

Встановлено обмеження діапазонностi розподілених резонаторів зі змінними зосередженими ємностями Ci та індуктивностями Lj. Вони значно перевищують аналогічні обмеження розподілених резонаторів з одним типом змінних елементів Ci або Lj. Це свідчить про перспективність використання резонаторів з комбінованою перестройкою частоти. Комбінована перестройка частоти забезпечується плавною зміною Ci та ступінчастою зміною Lj шляхом перемикання. Доведено, що використання ступінчасто-імпедансних резонаторів (СІР) з комбінованим налаштуванням частоти дозволяє ще більше збільшити діапазон налаштування. В СІР спостерігається ефект перетину сусідніх резонансних областей. Представлено експериментальні дані для мікросмужкового смуго-пропускного фільтра другого порядку з комбінованою перестройкою частоти.

Посилання

  1. S. Lee, J. Lee, J. Lee, “Synthesis of N-Foster-section filter with maximum 2N prescribed transmission zeros by heuristic-aided graph search,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 9, pp. 3979–3990, 2023, doi: https://doi.org/10.1109/TMTT.2023.3253569.
  2. P. Chu et al., “Substrate integrated waveguide filter with flexible mixed coupling,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 9, pp. 4003–4011, 2023, doi: https://doi.org/10.1109/TMTT.2023.3251567.
  3. A. Zakharov, S. Litvintsev, “Planar bandpass filters based on resonators generating transmission zeros,” IEEE Circuits Syst. Mag., vol. 25, no. 2, pp. 57–73, 2025, doi: https://doi.org/10.1109/MCAS.2025.3543781.
  4. A. V. Zakharov, S. Litvintsev, “Coupling matrix modification for bandpass filters with through-type resonators and simple couplings,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 71, no. 4, pp. 1864–1868, 2024, doi: https://doi.org/10.1109/TCSII.2023.3337439.
  5. A. Zakharov, S. Litvintsev, “Expanding functionality of dual-mode resonators and filters using nonuniform transmission line structural elements,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 8, pp. 3124–3135, 2022, doi: https://doi.org/10.1109/TCSI.2022.3169472.
  6. D. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing. Academic Press, 2010.
  7. L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications [Applications Notes],” IEEE Microw. Mag., vol. 9, no. 5, pp. 118–128, 2008, doi: https://doi.org/10.1109/MMM.2008.927634.
  8. T. Ishizaki, M. Fujita, H. Kagata, T. Uwano, H. Miyake, “A very small dielectric planar filter for portable telephones,” in 1993 IEEE MTT-S International Microwave Symposium Digest, 1993, pp. 177–180, doi: https://doi.org/10.1109/MWSYM.1993.276916.
  9. А. В. Захаров, М. Е. Ильченко, В. Я. Карнаух, Л. С. Пинчук, “Полосковые полосно-пропускающие фильтры со ступенчатыми резонаторами,” Известия вузов. Радиоэлектроника, vol. 54, no. 3, pp. 56–63, 2011, doi: https://doi.org/10.20535/S0021347011030071.
  10. A. Zakharov, M. Ilchenko, “Coupling coefficients between resonators in stripline combline and pseudocombline bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 7, pp. 2679–2690, 2020, doi: https://doi.org/10.1109/TMTT.2020.2988866.
  11. A. Fukasawa, “Analysis and composition of a new microwave filter configuration with inhomogeneous dielectric medium,” IEEE Trans. Microw. Theory Tech., vol. 30, no. 9, pp. 1367–1375, 1982, doi: https://doi.org/10.1109/TMTT.1982.1131262.
  12. M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication, vol. 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, doi: https://doi.org/10.1007/978-3-662-04325-7.
  13. A. V. Zakharov, S. A. Rozenko, “Duplexer designed on the basis of microstrip filters using high dielectric constant substrates,” J. Commun. Technol. Electron., vol. 57, no. 6, pp. 649–655, 2012, doi: https://doi.org/10.1134/S1064226912030187.
  14. A. Zakharov, M. Ilchenko, “Trisection microstrip delay line filter with mixed cross-coupling,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 12, pp. 1083–1085, 2017, doi: https://doi.org/10.1109/LMWC.2017.2759724.
  15. A. Zakharov, S. Rozenko, S. Litvintsev, “Combline filters with increased stopband and one-sided selectivity,” IEEE Microw. Wirel. Technol. Lett., vol. 33, no. 4, pp. 407–410, 2023, doi: https://doi.org/10.1109/LMWT.2022.3221269.
  16. M. Fan, K. Song, Y. Fan, “Reconfigurable bandpass filter with wide-range bandwidth and frequency control,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 6, pp. 1758–1762, 2021, doi: https://doi.org/10.1109/TCSII.2020.3040190.
  17. T. Lim, A. Anand, J. Chen, X. Liu, Y. Lee, “Design method for tunable planar bandpass filters with single-bias control and wide tunable frequency range,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 1, pp. 221–225, 2021, doi: https://doi.org/10.1109/TCSII.2020.3004614.
  18. A. Zakharov, M. Ilchenko, “Circuit function characterizing tunability of resonators,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 1, pp. 98–107, 2020, doi: https://doi.org/10.1109/TCSI.2019.2940066.
  19. W. Feng, Y. Zhang, W. Che, “Tunable dual-band filter and diplexer based on folded open loop ring resonators,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 9, pp. 1047–1051, 2017, doi: https://doi.org/10.1109/TCSII.2016.2634555.
  20. J. Sigman, C. D. Nordquist, P. G. Clem, G. M. Kraus, P. S. Finnegan, “Voltage-controlled Ku-band and X-band tunable combline filters using barium-strontium-titanate,” IEEE Microw. Wirel. Components Lett., vol. 18, no. 9, pp. 593–595, 2008, doi: https://doi.org/10.1109/LMWC.2008.2002453.
  21. K. Y. Chan, S. Fouladi, R. Ramer, R. R. Mansour, “RF MEMS switchable interdigital bandpass filter,” IEEE Microw. Wirel. Components Lett., vol. 22, no. 1, pp. 44–46, 2012, doi: https://doi.org/10.1109/LMWC.2011.2176926.
  22. J. F. White, Microwave Semiconductor Engineering. Dordrecht: Springer Netherlands, 1982, doi: https://doi.org/10.1007/978-94-011-7065-9.
  23. M. Makimoto, M. Sagawa, “Varactor tuned bandpass filters using microstrip-line ring resonators,” in MTT-S International Microwave Symposium Digest, 1986, vol. 86, pp. 411–414, doi: https://doi.org/10.1109/MWSYM.1986.1132206.
  24. X.-G. Wang, Y.-H. Cho, S.-W. Yun, “A tunable combline bandpass filter loaded with series resonator,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1569–1576, 2012, doi: https://doi.org/10.1109/TMTT.2012.2189123.
  25. A. Zakharov, M. Ilchenko, “Unloaded quality factor of transmission line resonators with capacitors,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 7, pp. 2204–2215, 2020, doi: https://doi.org/10.1109/TCSI.2020.2971112.
  26. P. Wong, I. Hunter, “Electronically tunable filters,” IEEE Microw. Mag., vol. 10, no. 6, pp. 46–54, 2009, doi: https://doi.org/10.1109/MMM.2009.933593.
  27. W. Qin, J. Cai, Y.-L. Li, J.-X. Chen, “Wideband tunable bandpass filter using optimized varactor-loaded SIRs,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 9, pp. 812–814, 2017, doi: https://doi.org/10.1109/LMWC.2017.2734848.
  28. J.-S. Hong, Microstrip Filters for RF/Microwave Applications, 2nd ed. New Jersey: Wiley, 2011, doi: https://doi.org/10.1002/9780470937297.
  29. J. X. Chen, Y. Ma, J. Cai, L. H. Zhou, Z. H. Bao, W. Che, “Novel frequency-agile bandpass filter with wide tuning range and spurious suppression,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6428–6435, 2015, doi: https://doi.org/10.1109/TIE.2015.2427122.
  30. J.-X. Chen, Y.-J. Zhang, J. Cai, Y.-L. Li, Y.-J. Yang, “Overall study of frequency-agile mechanism of varactor-loaded λ/4 resonator for designing tunable filter with stable wide stopband,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6302–6310, 2019, doi: https://doi.org/10.1109/TIE.2018.2873120.
  31. G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York: Artech House Books, 1980.
  32. Г. Корн, Т. Корн, Справочник По Математике Для Научных Работников и Инженеров. Москва: Наука, 1984.
  33. K. Géher, Theory of Network Tolerances. Budapest: Akadémiai Kiadó, 1971, uri: http://real-eod.mtak.hu/id/eprint/12705.
  34. H. W. Bode, Network Analysis and Feedback Amplifier Design. New Jersey: D. Van Nostrand Company, Inc, 1945.
  35. A. V. Zakharov, M. E. Il’chenko, “A new approach to designing varicap-tuned filters,” J. Commun. Technol. Electron., vol. 55, no. 12, pp. 1424–1431, 2010, doi: https://doi.org/10.1134/S1064226910120156.
  36. А. В. Захаров, М. Е. Ильченко, Л. С. Пинчук, “Коэффициенты связи между ступенчато-импедансными резонаторами в полосковых полосно-пропускающих фильтрах решетчатого типа,” Известия вузов. Радиоэлектроника, vol. 57, no. 5, pp. 35–44, 2014, doi: https://doi.org/10.20535/S0021347014050045.
Виготовлений мікросмужковий настроюваний СПФ

Опубліковано

2024-10-26

Як цитувати

Літвінцев, С. М., & Захаров, О. В. (2024). Комбінована перестройка частоти резонаторів з вiдрiзкiв лінії передачі. Вісті вищих учбових закладів. Радіоелектроніка, 67(10), 605–616. https://doi.org/10.20535/S0021347023030019

Номер

Розділ

Оригінальні статті