Повышение чувствительности биосенсоров с использованием эволюционного алгоритма для биомедицинских приложений
DOI:
https://doi.org/10.20535/S0021347020060047Ключові слова:
биосенсор, эволюционный алгоритм, туннельный полевой транзисторАнотація
Использование специальных приложений и устройств для биомедицинских целей облегчает диагностику состояния здоровья людей. Основными устройствами для работы биомедицинских приложений являются биосенсоры. Структура биосенсора основана на пьезоэлектрических, химических, оптических или электронных принципах работы. Биосенсоры на основе полевых транзисторов FET (field effect transistor) набирают популярность благодаря ряду явных преимуществ, таких как компактность, быстрота измерений и портативность. За счет небольших габаритов FET биосенсоры могут быть использованы для тестирования непосредственно на месте оказания медицинской помощи. В статье исследована чувствительность биосенсоров на основе FET при использовании эволюционного алгоритма для биомедицинских приложений (ЭАБМ). Также рассмотрены основные ограничения работы FET биосенсоров, такие как неспособность обнаружения нейтрально заряженных биомолекул и пониженная чувствительность. Для повышения чувствительности устройства исследован механизм, основанный на межзонном туннелировании, в туннельных полевых транзисторах. В данной работе источником информации выбран ток стока. При этом изменение концентрации биомолекул основано на изменениях концентрации легирующей примеси и использовании материалов с высокой диэлектрической проницаемостью. Предложенный ЭАБМ алгоритм показал, что оптимальное значение тока стока (чувствительности) достигается при увеличении концентрации легирующей примеси или диэлектрической проницаемости на затворе. Также данный ЭАБМ алгоритм дает лучшие результаты по сравнению с существующими моделями FET.Посилання
L. C. Clark, C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. New York Acad. Sci., vol. 102, no. 1, pp. 29–45, 1962, doi: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
P. Bergveld, “Short communications: Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. BME-17, no. 1, pp. 70–71, 1970, doi: https://doi.org/10.1109/TBME.1970.4502688.
S. Caras, J. Janata, “Field effect transistor sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, 1980, doi: https://doi.org/10.1021/ac50062a035.
M. J. Schöning, A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs),” Analyst, vol. 127, no. 9, pp. 1137–1151, 2002, doi: https://doi.org/10.1039/b204444g.
M. Fehr, D. W. Ehrhardt, S. Lalonde, W. B. Frommer, “Minimally invasive dynamic imaging of ions and metabolites in living cells,” Curr. Opin. Plant Biol., vol. 7, no. 3, pp. 345–351, 2004, doi: https://doi.org/10.1016/j.pbi.2004.03.015.
H.-J. Park et al., “Monitoring of C-reactive protein using ion sensitive field effect transistor biosensor,” Sens. Lett., vol. 8, no. 2, pp. 233–237, 2010, doi: https://doi.org/10.1166/sl.2010.1248.
A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, “Enzyme monolayer-functionalized field-effect transistors for biosensor applications,” Sensors Actuators, B Chem., vol. 70, no. 1–3, pp. 222–231, 2000, doi: https://doi.org/10.1016/S0925-4005(00)00573-6.
C. P. Price, “Regular review: Point of care testing,” Br. Med. J., vol. 322, no. 7297, pp. 1285–1288, 2001, doi: https://doi.org/10.1136/bmj.322.7297.1285.
P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors Actuators, B Chem., vol. 88, no. 1, pp. 1–20, 2003, doi: https://doi.org/10.1016/S0925-4005(02)00301-5.
W. Y. Choi, B.-G. Park, J. D. Lee, T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, 2007, doi: https://doi.org/10.1109/LED.2007.901273.
Y. Khatami, K. Banerjee, “Steep subthreshold slope n- and p-type Tunnel-FET devices for low-power and energy-efficient digital circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752–2761, 2009, doi: https://doi.org/10.1109/TED.2009.2030831.
R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, V. R. Rao, “A tunnel FET for VDD scaling below 0.6 v with a CMOS-comparable performance,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1855–1863, 2011, doi: https://doi.org/10.1109/TED.2011.2140322.
A. S. Verhulst, D. Leonelli, R. Rooyackers, G. Groeseneken, “Drain voltage dependent analytical model of tunnel field-effect transistors,” J. Appl. Phys., vol. 110, no. 2, p. 024510, 2011, doi: https://doi.org/10.1063/1.3609064.
M. G. Bardon, H. P. Neves, R. Puers, C. Van Hoof, “Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 827–834, 2010, doi: https://doi.org/10.1109/TED.2010.2040661.
D. Sarkar, K. Banerjee, “Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue,” in Device Research Conference - Conference Digest, DRC, 2012, pp. 83–84, doi: https://doi.org/10.1109/DRC.2012.6256950.
R. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta, M. Gupta, “A dielectric-modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2809–2817, 2012, doi: https://doi.org/10.1109/TED.2012.2208115.
R. Narang, M. Saxena, R. S. Gupta, M. Gupta, “Dielectric modulated tunnel field-effect transistor-a biomolecule sensor,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 266–268, 2012, doi: https://doi.org/10.1109/LED.2011.2174024.
Y. Pei-Wen et al., “A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples,” Biosens. Bioelectron., vol. 61, pp. 112–118, 2014, doi: https://doi.org/10.1016/j.bios.2014.05.010.
K. Kim et al., “Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity,” Biosens. Bioelectron., vol. 77, pp. 695–701, 2016, doi: https://doi.org/10.1016/j.bios.2015.10.008.
N. Aroonyadet et al., “Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay,” Nano Lett., vol. 15, no. 3, pp. 1943–1951, 2015, doi: https://doi.org/10.1021/nl5047889.
S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, “Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis,” Sensors Actuators, B Chem., vol. 212, pp. 329–334, 2015, doi: https://doi.org/10.1016/j.snb.2015.02.038.
S. Hideshima, R. Sato, S. Inoue, S. Kuroiwa, T. Osaka, “Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking,” Sensors Actuators, B Chem., vol. 161, no. 1, pp. 146–150, 2012, doi: https://doi.org/10.1016/j.snb.2011.10.001.
Z. Bao et al., “Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection,” Int. J. Nanomedicine, vol. 12, pp. 4623–4631, 2017, doi: https://doi.org/10.2147/IJN.S135985.
S. Mansouri Majd, A. Salimi, “Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film,” Anal. Chim. Acta, vol. 1000, pp. 273–282, 2018, doi: https://doi.org/10.1016/j.aca.2017.11.008.
H.-C. Chen et al., “A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis,” Biosens. Bioelectron., vol. 66, pp. 198–207, 2015, doi: https://doi.org/10.1016/j.bios.2014.11.019.
Y. Cui, C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851–853, 2001, doi: https://doi.org/10.1126/science.291.5505.851.
N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang, “Carbon nanotube based biosensors,” Sensors Actuators, B Chem., vol. 207, no. PartA, pp. 690–715, 2015, doi: https://doi.org/10.1016/j.snb.2014.10.040.
H. R. Byon, H. C. Choi, “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications,” J. Am. Chem. Soc., vol. 128, no. 7, pp. 2188–2189, 2006, doi: https://doi.org/10.1021/ja056897n.
X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-I. Chang, Q. Wang, “Carbon nanotube DNA sensor and sensing mechanism,” Nano Lett., vol. 6, no. 8, pp. 1632–1636, 2006, doi: https://doi.org/10.1021/nl060613v.
A. Star, J.-C. P. Gabriel, K. Bradley, G. Grüner, “Electronic detection of specific protein binding using nanotube FET devices,” Nano Lett., vol. 3, no. 4, pp. 459–463, 2003, doi: https://doi.org/10.1021/nl0340172.
C. Kataoka-Hamai, Y. Miyahara, “Label-free detection of DNA by field-effect devices,” IEEE Sensors J., vol. 11, no. 12, pp. 3153–3160, 2011, doi: https://doi.org/10.1109/JSEN.2011.2167143.
J. P. Colinge et al., “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, 2010, doi: https://doi.org/10.1038/nnano.2010.15.
H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, “A dielectric-modulated field-effect transistor for biosensing,” Nat. Nanotechnol., vol. 2, no. 7, pp. 430–434, 2007, doi: https://doi.org/10.1038/nnano.2007.180.
K. Boucart, A. M. Ionescu, “Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric,” Solid-State Electron., vol. 51, no. 11–12, pp. 1500–1507, 2007, doi: https://doi.org/10.1016/j.sse.2007.09.014.
A. M. Ionescu, H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, 2011, doi: https://doi.org/10.1038/nature10679.
Р. С. Кушвах, М. Чаухан, П. Шривастава, Ш. Акеше, “Разработка и сравнительный анализ схем перспективной технологии FinFET,” Известия высших учебных заведений. Радиоэлектроника, vol. 57, no. 12, pp. 43–51, 2014, doi: https://doi.org/10.20535/S0021347014120048.
E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181–188, 1960, doi: https://doi.org/10.1016/0022-3697(60)90035-4.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Известия высших учебных заведений. РадиоэлектроникаИздатель журнала Известия высших учебных заведений. Радиоэлектроника (сокр. "Известия вузов. Радиоэлектроника"), Национальный технический университет Украины "Киевский политехнический институт", учитывает, что доступ автора к его статье является важным как для самого автора, так и для спонсоров его исследований. Мы представлены в базе издателей SHERPA/RoMEO как зеленый издатель (green publisher), что позволяет автору выполнять самоархивирование своей статьи. Однако важно, чтобы каждая из сторон четко понимала свои права. Просьба более детально ознакомиться с Политикой самоархивирования нашего журнала.
Политика оплаченного открытого доступа POA (paid open access), принятая в журнале, позволяет автору выполнить все необходимые требования по открытому доступу к своей статье, которые выдвигаются институтом, правительством или фондом при выделении финансирования. Просьба более детально ознакомиться с политикой оплаченного открытого доступа нашего журнала (см. отдельно).
Варианты доступа к статье:
1. Статья в открытом доступе POA (paid open access)
В этом случае права автора определяются лицензией CC BY (Creative Commons Attribution).
2. Статья с последующим доступом по подписке
В этом случае права автора определяются авторским договором, приведенным далее.
- Автор (каждый соавтор) уступает Издателю журнала «Известия высших учебных заведений. Радиоэлектроника» НТУУ «КПИ» на срок действия авторского права эксклюзивные права на материалы статьи, в том числе право на публикацию данной статьи издательством Аллертон Пресс, США (Allerton Press) на английском языке в журнале «Radioelectronics and Communications Systems». Передача авторского права охватывает исключительное право на воспроизведение и распространение статьи, включая оттиски, переводы, фото воспроизведения, микроформы, электронные формы (он- и оффлайн), или любые иные подобные формы воспроизведения, а также право издателя на сублицензирование третьим лицам по своему усмотрению без дополнительных консультаций с автором. При этом журнал придерживается Политики конфиденциальности.
- Передача прав включает право на обработку формы представления материалов с помощью компьютерных программам и систем (баз данных) для их использования и воспроизводства, публикации и распространения в электронном формате и внедрения в системы поиска (базы данных).
- Воспроизведение, размещение, передача или иное распространение или использование материалов, содержащихся в статье должно сопровождаться ссылкой на Журнал и упоминанием Издателя, а именно: название статьи, имя автора (соавторов), название журнала, номер тома, номер выпуска, копирайт авторов и издателя "© Национальный технический университет Украины "Киевский политехнический институт"; © автор(ы)".
- Автор (каждый соавтор) материалов сохраняет все права собственника материалов, включая патентные права на любые процессы, способы или методы и др., а также права на товарные знаки.
- Издатель разрешает автору (каждому соавтору) материалов следующее:
- Право пользоваться печатными или электронными вариантами материалов статьи в форме и содержании, принятыми Издателем для публикации в Журнале. Подробнее см. политики Оплаченного открытого доступа, подписки и самоархивирования.
- Право бесплатно копировать или передавать коллегам копию напечатанной статьи целиком или частично для их личного или профессионального использования, для продвижения академических или научных исследований или для учебного процесса или других информационных целей, не связанных с коммерческими целями.
- Право использовать материалы из опубликованной статьи в написанной автором (соавторами) книге, монографии, учебнике, учебном пособии и других научных и научно-популярных изданиях.
- Право использовать отдельные рисунки или таблицы и отрывки текста из материалов в собственных целях обучения или для включения их в другую работу, которая печатается (в печатном или электронном формате) третьей стороной, или для представления в электронном формате во внутренние компьютерные сети или на внешние сайты автора (соавторов).
- Автор (соавторы) соглашаются, что каждая копия материалов или любая ее часть, распространенная или размещенная ими в печатном или электронном формате, будет содержать указание на авторское право, предусмотренное в Журнале и полную ссылку на Журнал Издателя.
- Автор (соавторы) гарантирует, что материалы являются оригинальной работой и представлены впервые на рассмотрение только в этом Журнале и ранее не публиковались. Если материалы написаны совместно с соавторами, автор гарантирует, что проинформировал их относительно условий публикации материалов и получил их подписи или письменное разрешение подписываться от их имени.
- Если в материалы включаются отрывки из работ или имеются указания на работы, которые охраняются авторским правом и принадлежат третьей стороне, то автору необходимо получить разрешение владельца авторских прав на использование таких материалов в первом случае и сделать ссылку на первоисточник во втором.
- Автор гарантирует, что материалы не содержат клеветнических высказываний и не посягают на права (включая без ограничений авторское право, права на патент или торговую марку) других лиц и не содержат материалы или инструкции, которые могут причинить вред или ущерб третьим лицам. Автор (каждый соавтор) гарантирует, что их публикация не приведет к разглашению секретных или конфиденциальных сведений (включая государственную тайну). Подтверждением этого является Экспертное заключение (см. перечень документов в Правила для авторов).
- Издатель обязуется опубликовать материалы в случае получения статьей положительного решения редколлегии о публикации на основании внешнего рецензирования (см. Политика рецензирования).
- В случае публикации статьи на английском языке в журнале «Radioelectronics and Communications Systems» (Издатель: Аллертон Пресс, США, распространитель Springer) автору (соавторам) выплачивается гонорар после выхода последнего номера журнала года, в котором опубликована данная статья.
- Документ Согласие на публикацию, который подают русскоязычные авторы при подаче статьи в редакцию, является краткой формой данного договора, в котором изложены все ключевые моменты настоящего договора и наличие которого подтверждает согласие автора (соавторов) с ним. Аналогичным документом для англоязычных авторов является Copyright Transfer Agreement (CTA), предоставляемый издательством Allerton Press.
- Настоящий Договор вступает в силу в момент принятия статьи к публикации. Если материалы не принимаются к публикации или до публикации в журнале автор (авторы) отозвал работу, настоящий Договор не приобретает (теряет) силу.