Порівняльне дослідження реалізації блокових шифрів для пристроїв з обмеженими ресурсами (огляд)

Автор(и)

  • М. Ш. Найк Технологічний інститут NMAM, Нітте; Інженерний коледж “Новий горизонт”, Бенгалуру, India
  • Д. К. Шріканта Технологічний інститут NMAM, Нітте, India
  • К. В. С. С. С. С. Сайрам Технологічний інститут NMAM, Нітте, India

DOI:

https://doi.org/10.20535/S0021347023050011

Ключові слова:

легкі блокові шифри, FPGA, шифрування, розшифрування, криптографія

Анотація

Легка криптографія LWC (LightWeight Cryptography) має вирішальне значення для захисту даних обміну між пристроями з обмеженими ресурсами. У статті розглянуто апаратні реалізації блокових шифрів BC (block ciphers). Детально описані BC з використанням структур мережі перестановки заміни SPN (Substitution Permutation Network) і мережі Фейстеля FN (Feistel network). Надано короткий опис деяких BC на основі структур SPN і FN. Крім того, у статті проведено порівняння та детальний аналіз продуктивності сучасних BC на базі SPN та FN. Для кожного блокового шифру порівнюються такі показники продуктивності, як площа чіпа (кількість модулів), частота, затримка, пропускна здатність і ефективність використання обладнання. В статті також наведені рекомендації щодо використання відповідних шифрів з більш та менш оптимальними показниками продуктивності. Серед різних BC шифр PRINCE має мінімальну затримку та велику пропускну здатність. Дослідження також показало, що шифри LED і PRESENT більш компактні, ніж інші шифри. Також наведено напрямки для подальших перспективних досліджень.

Посилання

I. Bhardwaj, A. Kumar, M. Bansal, “A review on lightweight cryptography algorithms for data security and authentication in IoTs,” in 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), 2017, pp. 504–509, doi: https://doi.org/10.1109/ISPCC.2017.8269731.

C. Pei, Y. Xiao, W. Liang, X. Han, “Trade-off of security and performance of lightweight block ciphers in Industrial Wireless Sensor Networks,” EURASIP J. Wirel. Commun. Netw., vol. 2018, no. 1, p. 117, 2018, doi: https://doi.org/10.1186/s13638-018-1121-6.

B. J. Mohd, T. Hayajneh, A. V. Vasilakos, “A survey on lightweight block ciphers for low-resource devices: Comparative study and open issues,” J. Netw. Comput. Appl., vol. 58, pp. 73–93, 2015, doi: https://doi.org/10.1016/j.jnca.2015.09.001.

E. R. Naru, H. Saini, M. Sharma, “A recent review on lightweight cryptography in IoT,” in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017, pp. 887–890, doi: https://doi.org/10.1109/I-SMAC.2017.8058307.

G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, C. Manifavas, “A review of lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp. 141–184, 2018, doi: https://doi.org/10.1007/s13389-017-0160-y.

S. Surendran, A. Nassef, B. D. Beheshti, “A survey of cryptographic algorithms for IoT devices,” in 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT), 2018, pp. 1–8, doi: https://doi.org/10.1109/LISAT.2018.8378034.

A. Sevin, A. A. O. Mohammed, “A survey on software implementation of lightweight block ciphers for IoT devices,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 3, pp. 1801–1815, 2023, doi: https://doi.org/10.1007/s12652-021-03395-3.

Nayancy, S. Dutta, S. Chakraborty, “A survey on implementation of lightweight block ciphers for resource constraints devices,” J. Discret. Math. Sci. Cryptogr., vol. 25, no. 5, pp. 1377–1398, 2022, doi: https://doi.org/10.1080/09720502.2020.1766764.

L. Sliman, T. Omrani, Z. Tari, A. E. Samhat, R. Rhouma, “Towards an ultra lightweight block ciphers for Internet of Things,” J. Inf. Secur. Appl., vol. 61, p. 102897, 2021, doi: https://doi.org/10.1016/j.jisa.2021.102897.

H. Luo, W. Chen, X. Ming, Y. Wu, “General differential fault attack on PRESENT and GIFT cipher with Nibble,” IEEE Access, vol. 9, pp. 37697–37706, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3062665.

T. R. Lee, J. Sen Teh, N. Jamil, J. L. S. Yan, J. Chen, “Lightweight block cipher security evaluation based on machine learning classifiers and active S-boxes,” IEEE Access, vol. 9, pp. 134052–134064, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3116468.

M. F. Idris, J. Sen Teh, J. L. S. Yan, W.-Z. Yeoh, “A deep learning approach for active S-box prediction of lightweight generalized Feistel block ciphers,” IEEE Access, vol. 9, pp. 104205–104216, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3099802.

S. Muzaffar, O. T. Waheed, Z. Aung, I. M. Elfadel, “Lightweight, single-clock-cycle, multilayer cipher for single-channel IoT communication: Design and implementation,” IEEE Access, vol. 9, pp. 66723–66737, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3076468.

V. Yli-Mayry et al., “Diffusional side-channel leakage from unrolled lightweight block ciphers: A case study of power analysis on PRINCE,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1351–1364, 2021, doi: https://doi.org/10.1109/TIFS.2020.3033441.

S. Kim, J. Kim, S. Kim, D. Hong, J. Sung, S. Hong, “Integral cryptanalysis of lightweight block cipher PIPO,” IEEE Access, vol. 10, pp. 110195–110204, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3214665.

F. E. Potestad-Ordonez, E. Tena-Sanchez, A. J. Acosta-Jimenez, C. J. Jimenez-Fernandez, R. Chaves, “Design and evaluation of countermeasures against fault injection attacks and power side-channel leakage exploration for AES block cipher,” IEEE Access, vol. 10, pp. 65548–65561, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3183764.

H. Xiao, L. Wang, “Differential fault analysis on the key schedule of the LBlock algorithm,” IEEE Access, vol. 10, pp. 62402–62411, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3181992.

S. An, S. C. Seo, “Designing a new XTS-AES parallel optimization implementation technique for fast file encryption,” IEEE Access, vol. 10, pp. 25349–25357, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3155810.

R. Ghayoula, J. Fattahi, A. Smida, I. El Gmati, E. Pricop, M. Ziadia, “FPGA implementation of SIMON-128 cryptographic algorithm using Artix-7,” in 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2022, pp. 1–5, doi: https://doi.org/10.1109/ECAI54874.2022.9847520.

“The performance of various lightweight block ciphers FPGA architectures: A review,” Al-Iraqia J. Sci. Eng. Res., vol. 1, no. 1, 2022, doi: https://doi.org/10.33193/IJSER.1.1.2022.43.

V. Agate, F. Concone, A. De Paola, P. Ferraro, G. Lo Re, M. Morana, “Bayesian modeling for differential cryptanalysis of block ciphers: A DES instance,” IEEE Access, vol. 11, pp. 4809–4820, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3236240.

L. Zhao, Y. Chi, Z. Xu, Z. Yue, “Block cipher identification scheme based on Hamming weight distribution,” IEEE Access, vol. 11, pp. 21364–21373, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3249753.

R. Davis, “The data encryption standard in perspective,” IEEE Commun. Soc. Mag., vol. 16, no. 6, pp. 5–9, 1978, doi: https://doi.org/10.1109/MCOM.1978.1089771.

J. Nechvatal et al., “Report on the development of the Advanced Encryption Standard (AES),” J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 3, p. 511, 2001, doi: https://doi.org/10.6028/jres.106.023.

R. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems (1978),” in Ideas That Created the Future, The MIT Press, 2021, pp. 463–474.

M. Amara, A. Siad, “Elliptic curve cryptography and its applications,” in International Workshop on Systems, Signal Processing and their Applications, WOSSPA, 2011, pp. 247–250, doi: https://doi.org/10.1109/WOSSPA.2011.5931464.

U. M. Maurer, “Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms,” in Advances in Cryptology — CRYPTO ’94, Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 271–281.

A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in Cryptographic Hardware and Embedded Systems - CHES 2007, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466.

L. Knudsen, G. Leander, A. Poschmann, M. J. B. Robshaw, “PRINTcipher: A block cipher for IC-printing,” in Lecture Notes in Computer Science, 2010, pp. 16–32.

J. Guo, T. Peyrin, A. Poschmann, M. Robshaw, “The LED block cipher,” in Cryptographic Hardware and Embedded Systems – CHES 2011, 2011, pp. 326–341, doi: https://doi.org/10.1007/978-3-642-23951-9_22.

Z. Gong, S. Nikova, Y. W. Law, “KLEIN: A new family of lightweight block ciphers,” in RFID. Security and Privacy, 2012, pp. 1–18.

D. Engels, M.-J. O. Saarinen, P. Schweitzer, E. M. Smith, “The hummingbird-2 lightweight authenticated encryption algorithm,” in RFID. Security and Privacy, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 19–31.

J. Borghoff et al., “PRINCE – a low-latency block cipher for pervasive computing applications,” in Advances in Cryptology – ASIACRYPT 2012, 2012, pp. 208–225.

W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, I. Verbauwhede, “RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms,” Sci. China Inf. Sci., vol. 58, no. 12, pp. 1–15, 2015, doi: https://doi.org/10.1007/s11432-015-5459-7.

D. J. Wheeler, R. M. Needham, “TEA, a tiny encryption algorithm,” in International Workshop on Fast Software Encryption, 1995, pp. 363–366, doi: https://doi.org/10.1007/3-540-60590-8_29.

J.-P. Kaps, “Chai-Tea, cryptographic hardware implementations of xTEA,” in International Conference on Cryptology in India, 2008, pp. 363–375, doi: https://doi.org/10.1007/978-3-540-89754-5_28.

D. Hong et al., “HIGHT: A new block cipher suitable for low-resource device,” in International Workshop on Cryptographic Hardware and Embedded Systems, 2006, pp. 46–59, doi: https://doi.org/10.1007/11894063_4.

C. De Cannière, O. Dunkelman, M. Knežević, “KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers,” in International Workshop on Cryptographic Hardware and Embedded Systems, 2009, pp. 272–288, doi: https://doi.org/10.1007/978-3-642-04138-9_20.

T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, “The 128-bit blockcipher CLEFIA (extended abstract),” in International Workshop on Fast Software Encryption, 2007, pp. 181–195, doi: https://doi.org/10.1007/978-3-540-74619-5_12.

W. Wu, L. Zhang, “LBlock: A lightweight block cipher,” in International Conference on Applied Cryptography and Network Security, 2011, pp. 327–344, doi: https://doi.org/10.1007/978-3-642-21554-4_19.

R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, “The SIMON and SPECK lightweight block ciphers,” in Proceedings of the 52nd Annual Design Automation Conference, 2015, pp. 1–6, doi: https://doi.org/10.1145/2744769.2747946.

S. P. Guruprasad, B. S. Chandrasekar, “An evaluation framework for security algorithms performance realization on FPGA,” in 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), 2018, pp. 1–6, doi: https://doi.org/10.1109/ICCTAC.2018.8370396.

C. A. Lara-Nino, A. Diaz-Perez, M. Morales-Sandoval, “Lightweight hardware architectures for the present cipher in FPGA,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 64, no. 9, pp. 2544–2555, 2017, doi: https://doi.org/10.1109/TCSI.2017.2686783.

R. Bharathi, N. Parvatham, “Light-weight present block cipher model for IoT security on FPGA,” Intell. Autom. Soft Comput., vol. 33, no. 1, pp. 35–49, 2022, doi: https://doi.org/10.32604/iasc.2022.020681.

B. Rashidi, “Flexible structures of lightweight block ciphers PRESENT, SIMON and LED,” IET Circuits, Devices Syst., vol. 14, no. 3, pp. 369–380, 2020, doi: https://doi.org/10.1049/iet-cds.2019.0363.

T. Okabe, “Efficient FPGA implementations of PRINTCIPHER,” J. Emerg. Technol. Innov. Res., vol. 13, no. 4, pp. 76–85, 2016, uri: https://www.jetir.org/view?paper=JETIR1604017.

N. Nalla Anandakumar, T. Peyrin, A. Poschmann, “A very compact FPGA implementation of LED and PHOTON,” in International Conference on Cryptology in India, 2014, pp. 304–321, doi: https://doi.org/10.1007/978-3-319-13039-2_18.

P. Singh, B. Acharya, R. K. Chaurasiya, “High throughput architecture for KLEIN block cipher in FPGA,” in 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), 2019, pp. 64–69, doi: https://doi.org/10.1109/IEMECONX.2019.8877021.

T. Harikrishnan, C. Babu, “Cryptanalysis of hummingbird algorithm with improved security and throughput,” in 2015 International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA), 2015, pp. 1–6, doi: https://doi.org/10.1109/VLSI-SATA.2015.7050460.

A. A. Abdullah, N. R. Obeid, “Efficient implementation for PRINCE algorithm in FPGA based on the BB84 protocol,” J. Phys. Conf. Ser., vol. 1818, no. 112216, 2021, doi: https://doi.org/10.1088/1742-6596/1818/1/012216.

S. Feizi, A. Nemati, A. Ahmadi, V. A. Makki, “A high-speed FPGA implementation of a bit-slice ultra-lightweight block cipher, RECTANGLE,” in 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), 2015, pp. 206–211, doi: https://doi.org/10.1109/ICCKE.2015.7365828.

J. G. Pandey, A. Laddha, S. D. Samaddar, “A lightweight VLSI architecture for RECTANGLE cipher and its implementation on an FPGA,” in 2020 24th International Symposium on VLSI Design and Test (VDAT), 2020, pp. 1–6, doi: https://doi.org/10.1109/VDAT50263.2020.9190623.

R. Anusha, V. Veena Devi Shastrimath, “LCBC-XTEA: High throughput lightweight cryptographic block cipher model for low-cost RFID systems,” in Cybernetics and Automation Control Theory Methods in Intelligent Algorithms, 2019, pp. 185–196, doi: https://doi.org/10.1007/978-3-030-19813-8_20.

B. Rashidi, “High-throughput and lightweight hardware structures of HIGHT and PRESENT block ciphers,” Microelectron. J., vol. 90, pp. 232–252, 2019, doi: https://doi.org/10.1016/j.mejo.2019.06.012.

P. W. Shaikh, I. W. Damaj, “Analysis of pipelined KATAN ciphers under handle-C for FPGAs,” in 2018 International Conference on Innovations in Information Technology (IIT), 2018, pp. 163–168, doi: https://doi.org/10.1109/INNOVATIONS.2018.8606012.

X. Cheng, H. Zhu, Y. Xu, Y. Zhang, H. Xiao, Z. Zhang, “A reconfigurable and compact hardware architecture of CLEFIA block cipher with multi-configuration,” Microelectron. J., vol. 114, p. 105144, 2021, doi: https://doi.org/10.1016/j.mejo.2021.105144.

K. R. Aljazeera, R. Nandakumar, S. B. Ershad, “Design and characterization of LBlock cryptocore,” in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 2016, pp. 166–172, doi: https://doi.org/10.1109/SCOPES.2016.7955732.

S. Abed, R. Jaffal, B. Mohd, M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors, vol. 19, no. 4, p. 913, 2019, doi: https://doi.org/10.3390/s19040913.

P. Ahir, M. Mozaffari-Kermani, R. Azarderakhsh, “Lightweight architectures for reliable and fault detection Simon and speck cryptographic algorithms on FPGA,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 4, pp. 1–17, 2017, doi: https://doi.org/10.1145/3055514.

T. Ashur, A. Luykx, “An account of the ISO/IEC standardization of the Simon and speck block cipher families,” in Security of Ubiquitous Computing Systems, Cham: Springer International Publishing, 2021, pp. 63–78.

A. Nemati, S. Feizi, A. Ahmadi, V. A. Makki, “A low-cost and flexible FPGA implementation for SPECK block cipher,” in 2015 12th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC), 2015, pp. 42–47, doi: https://doi.org/10.1109/ISCISC.2015.7387896.

A. Kaur, G. Singh, “Encryption algorithms based on security in IoT (Internet of Things),” in 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021, pp. 482–486, doi: https://doi.org/10.1109/ISPCC53510.2021.9609495.

R. S. Salman, A. K. Farhan, A. Shakir, “Lightweight modifications in the advanced encryption standard (AES) for IoT applications: A comparative survey,” in 2022 International Conference on Computer Science and Software Engineering (CSASE), 2022, pp. 325–330, doi: https://doi.org/10.1109/CSASE51777.2022.9759828.

Класифікація алгоритмів легкої криптографії

Опубліковано

2023-12-31 — Оновлено 2023-03-26

Як цитувати

Найк, М. Ш., Шріканта, Д. К., & Сайрам, К. В. С. С. С. С. (2023). Порівняльне дослідження реалізації блокових шифрів для пристроїв з обмеженими ресурсами (огляд). Вісті вищих учбових закладів. Радіоелектроніка, 66(3), 148–163. https://doi.org/10.20535/S0021347023050011

Номер

Розділ

Оглядові статті