Методи розв’язки в антенах MIMO для мобільних пристроїв 5G (комплексний огляд)

Автор(и)

DOI:

https://doi.org/10.20535/S0021347023040027

Ключові слова:

технологія 5G, методи розв’язки, антенна MIMO, мобільні термінали

Анотація

Останнім часом, внаслідок швидкого розвитку мультимедійних застосунків в системах бездротового зв’язку та вимог щодо підвищення пропускної здатності та швидкості передачі даних для виконання вимог систем мобільного зв’язку 5G, з’явилось розуміння необхідності створення нових методів передачі. Одним із потужних засобів для реалізації систем зв’язку 5G є антенна система за принципом багато-входів багато-виходів MIMO (multi-input multi-output), яка використовує багато антен та застосовує мобільне середовище з багатопроменевим завмиранням для збільшення пропускної здатності каналу без будь-якої додаткової смуги пропускання та/або переданої потужності. Однак, внаслідок обмеженого об’єм мобільних пристроїв, відстані між антенами зменшуються. Взаємний зв’язок між антенами сильно впливає на загальну робочу ефективність системи MIMO. Отже, для зменшення згаданих впливів застосовуються методи покращення розв’язки. В цьому огляді представлені різні методи розв’язки, їх особливості та недоліки, а також представлені процедури для їх застосування в сучасних антенних системах MIMO. Цей огляд також містить головні принципи побудови антенної системи MIMO та її робочі характеристики. Стисло розглянуті майбутні напрямки та тренди, що пов’язані з проектуванням антенних систем MIMO.

Біографія автора

Дж. К. Алі, Технологічний університет, Багдад

Department of Communication Engineering

Посилання

A. Zhao, Z. Ren, “Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 1, pp. 152–156, 2019, doi: https://doi.org/10.1109/LAWP.2018.2883428.

П. Саксена, С. Б. Патель, Д. К. Бхалани, “Полуслепой анализ канала MIMO с использованием регуляризованных по Тихонову алгоритмов MMSE и MAP с QR-разложением на основе преобразования Хаусхолдера,” Известия вузов. Радиоэлектроника, vol. 64, no. 4, pp. 195–203, 2021, doi: https://doi.org/10.20535/S0021347021040014.

В. Т. Ермолаев, А. Г. Флаксман, А. Е. Рубцов, С. А. Тираспольский, В. Ю. Семенов, М. А. Соколов, “Применение технологии MIMO в широкополосных системах беспроводной связи миллиметрового диапазона волн,” Известия вузов. Радиоэлектроника, vol. 54, no. 4, pp. 55–64, 2011, doi: https://doi.org/10.20535/S002134701104008X.

W. Jiang, B. Liu, Y. Cui, W. Hu, “High-isolation eight-element MIMO array for 5G smartphone applications,” IEEE Access, vol. 7, pp. 34104–34112, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2904647.

X. Chen, S. Zhang, Q. Li, “A review of mutual coupling in MIMO systems,” IEEE Access, vol. 6, pp. 24706–24719, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2830653.

GSMA, “5G Spectrum: GSMA Public Policy Position,” 2022. uri: https://www.gsma.com/spectrum/wp-content/uploads/2022/06/5G-Spectrum-Positions.pdf.

H. Holma, A. Toskala, T. Nakamura, 5G Technology: 3GPP New Radio. Hoboken, NJ: Wiley, 2019, uri: https://www.wiley.com/en-us/5G+Technology%3A+3GPP+New+Radio-p-9781119236290.

W. Hong, “Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift,” IEEE Microw. Mag., vol. 18, no. 7, pp. 86–102, 2017, doi: https://doi.org/10.1109/MMM.2017.2740538.

J. Sui, K.-L. Wu, “Self-curing decoupling technique for two inverted-F antennas with capacitive loads,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1093–1101, 2018, doi: https://doi.org/10.1109/TAP.2018.2790041.

H. Zou et al., “Dual-functional MIMO antenna array with high isolation for 5G/WLAN applications in smartphones,” IEEE Access, vol. 7, pp. 167470–167480, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2953311.

C. F. Ding, X. Y. Zhang, C.-D. Xue, C.-Y.-D. Sim, “Novel pattern-diversity-based decoupling method and its application to multielement MIMO antenna,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 4976–4985, 2018, doi: https://doi.org/10.1109/TAP.2018.2851380.

G.-T. Jeong, S. Choi, K. Lee, W.-S. Kim, “Low-profile dual-wideband MIMO antenna with low ECC for LTE and Wi-Fi applications,” Int. J. Antennas Propag., vol. 2014, pp. 1–6, 2014, doi: https://doi.org/10.1155/2014/158028.

M. S. Khan, A. Iftikhar, R. M. Shubair, A.-D. Capobianco, B. D. Braaten, D. E. Anagnostou, “Eight-element compact UWB-MIMO/diversity antenna with WLAN band rejection for 3G/4G/5G communications,” IEEE Open J. Antennas Propag., vol. 1, pp. 1–1, 2020, doi: https://doi.org/10.1109/OJAP.2020.2991522.

M. S. Khan, A. Capobianco, A. Naqvi, B. Ijaz, S. Asif, B. D. Braaten, “Planar, compact ultra‐wideband polarisation diversity antenna array,” IET Microwaves, Antennas Propag., vol. 9, no. 15, pp. 1761–1768, 2015, doi: https://doi.org/10.1049/iet-map.2015.0371.

M. Li, Z. Xu, Y. Ban, C. Sim, Z. Yu, “Eight‐port orthogonally dual‐polarised MIMO antennas using loop structures for 5G smartphone,” IET Microwaves, Antennas Propag., vol. 11, no. 12, pp. 1810–1816, 2017, doi: https://doi.org/10.1049/iet-map.2017.0230.

R. Mathur, S. Dwari, “8‐port multibeam planar UWB‐MIMO antenna with pattern and polarisation diversity,” IET Microwaves, Antennas Propag., vol. 13, no. 13, pp. 2297–2302, 2019, doi: https://doi.org/10.1049/iet-map.2019.0134.

J. Oh, K. Sarabandi, “Compact low profile common aperture polarization and pattern diversity antennas,” in 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 2013, pp. 1–1, doi: https://doi.org/10.1109/USNC-URSI-NRSM.2013.6524979.

A. Boukarkar, X. Q. Lin, Y. Jiang, L. Y. Nie, P. Mei, Y. Q. Yu, “A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 1, pp. 134–137, 2018, doi: https://doi.org/10.1109/LAWP.2017.2777839.

Z. Li, Z. Du, M. Takahashi, K. Saito, K. Ito, “Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 473–481, 2012, doi: https://doi.org/10.1109/TAP.2011.2173432.

Y.-L. Ban, C. Li, C.-Y.-D. Sim, G. Wu, K.-L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981–2988, 2016, doi: https://doi.org/10.1109/ACCESS.2016.2582786.

W. Huey Shin, S. Kibria, M. Tariqul Islam, “Hexa band MIMO antenna with neutralization line for LTE mobile device application,” Microw. Opt. Technol. Lett., vol. 58, no. 5, pp. 1198–1204, 2016, doi: https://doi.org/10.1002/mop.29769.

J. Sui, K.-L. Wu, “A general T-stub circuit for decoupling of two dual-band antennas,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 6, pp. 2111–2121, 2017, doi: https://doi.org/10.1109/TMTT.2017.2647951.

L. Zhao, K.-L. Wu, “A dual-band coupled resonator decoupling network for two coupled antennas,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 2843–2850, 2015, doi: https://doi.org/10.1109/TAP.2015.2421973.

X.-T. Yuan, W. He, K.-D. Hong, C.-Z. Han, Z. Chen, T. Yuan, “Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application,” IEEE Access, vol. 8, pp. 56281–56289, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2982036.

M. Ikram, M. S. Sharawi, A. Shamim, A. Sebak, “A multiband dual‐standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones,” Microw. Opt. Technol. Lett., vol. 60, no. 6, pp. 1468–1476, 2018, doi: https://doi.org/10.1002/mop.31180.

S. Soltani, P. Lotfi, R. D. Murch, “A dual-band multiport MIMO slot antenna for WLAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 529–532, 2017, doi: https://doi.org/10.1109/LAWP.2016.2587732.

M. Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, E. Limiti, “Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading,” IEEE Access, vol. 7, pp. 23606–23614, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2899326.

M. Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, E. Limiti, “Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas,” IEEE Access, vol. 7, pp. 51827–51840, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2909950.

L. Chang, Y. Yu, K. Wei, H. Wang, “Orthogonally polarized dual antenna pair with high isolation and balanced high performance for 5G MIMO smartphone,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3487–3495, 2020, doi: https://doi.org/10.1109/TAP.2020.2963918.

L. Qu, H. Lee, H. Shin, M. Kim, H. Kim, “MIMO antennas using controlled orthogonal characteristic modes by metal rims,” IET Microwaves, Antennas Propag., vol. 11, no. 7, pp. 1009–1015, 2017, doi: https://doi.org/10.1049/iet-map.2016.0995.

Y. Wu, C. Xiao, Z. Ding, X. Gao, S. Jin, “A survey on MIMO transmission with finite input signals: Technical challenges, advances, and future trends,” Proc. IEEE, vol. 106, no. 10, pp. 1779–1833, 2018, doi: https://doi.org/10.1109/JPROC.2018.2848363.

А. Pandey, Practical Microstrip and Printed Antenna Design. Boston: Artech House, 2019, uri: https://us.artechhouse.com/Practical-Microstrip-and-Printed-Antenna-Design-P2002.aspx.

M. Y. Muhsin, A. J. Salim, J. K. Ali, “An eight-element MIMO antenna system for 5G mobile handsets,” in 2021 International Symposium on Networks, Computers and Communications (ISNCC), 2021, pp. 1–4, doi: https://doi.org/10.1109/ISNCC52172.2021.9615663.

H. Jiang, G. Gui, Channel Modeling in 5G Wireless Communication Systems. Switzerland: Springer, 2020.

R. Khan, A. A. Al-Hadi, P. J. Soh, M. R. Kamarudin, M. T. Ali, . Owais, “User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas,” IEEE Access, vol. 6, pp. 77695–77715, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2883788.

W. Jiang, Y. Cui, B. Liu, W. Hu, Y. Xi, “A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications,” IEEE Access, vol. 7, pp. 112554–112563, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2934892.

Q. Cai, Y. Li, X. Zhang, W. Shen, “Wideband MIMO antenna array covering 3.3–7.1 GHz for 5G metal-rimmed smartphone applications,” IEEE Access, vol. 7, pp. 142070–142084, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2944681.

D. A. Sánchez Hernandez, Multiband Integrated Antennas for 4G Terminals. Norwood, MA: Artech House, 2008.

C. A. Balanis, Antenna Theory: Analysis and Design. New Jersey: Wiley, 2016, uri: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

S. Blanch, J. Romeu, I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, no. 9, p. 705, 2003, doi: https://doi.org/10.1049/el:20030495.

M. A. Abu-Rgheff, 5G Physical Layer Technologies. Hoboken, NJ: Wiley, 2020.

A. Salim, R. Fyath, J. Ali, “A new miniaturized folded fractal based PIFA antenna design for MIMO wireless applications,” in Proceedings of the International Conference on Information and Communication Technology, 2019, pp. 36–40, doi: https://doi.org/10.1145/3321289.3321298.

W. Hu et al., “Dual-band eight-element MIMO array using multi-slot decoupling technique for 5G terminals,” IEEE Access, vol. 7, pp. 153910–153920, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2948639.

M. Muhsin, J. Ali, A. Salim, “A compact high isolation four elements MIMO antenna system for 5G mobile devices,” Eng. Technol. J., vol. 40, no. 8, pp. 160–169, 2022, doi: https://doi.org/10.30684/etj.2021.131103.1004.

Z. Qin, W. Geyi, M. Zhang, J. Wang, “Printed eight‐element MIMO system for compact and thin 5G mobile handest,” Electron. Lett., vol. 52, no. 6, pp. 416–418, 2016, doi: https://doi.org/10.1049/el.2015.3960.

A. J. Salim, R. S. Fyath, A. H. Ahmed, J. K. Ali, “A new fractal based PIFA antenna design for MIMO dual band WLAN applications,” in Progress In Electromagnetics Research Symposium, 2012.

K. Fujimoto, J. R. James, Mobile Antenna Systems Handbook. Norwood, MA: Artech House, 2008.

H. T. Chattha, “4-port 2-element MIMO antenna for 5G portable applications,” IEEE Access, vol. 7, pp. 96516–96520, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2925351.

Y. Li, C.-Y.-D. Sim, Y. Luo, G. Yang, “12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications,” IEEE Access, vol. 6, pp. 344–354, 2018, doi: https://doi.org/10.1109/ACCESS.2017.2763161.

H. Zou, Y. Li, H. Shen, H. Wang, G. Yang, “Design of 6 × 6 dual-band MIMO antenna array for 4.5G/5G smartphone applications,” in 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 2017, pp. 1–3, doi: https://doi.org/10.1109/APCAP.2017.8420882.

Y. Li, C.-Y.-D. Sim, Y. Luo, G. Yang, “High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3820–3830, 2019, doi: https://doi.org/10.1109/TAP.2019.2902751.

Y. Li, C.-Y.-D. Sim, Y. Luo, G. Yang, “Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones,” IEEE Access, vol. 6, pp. 28041–28053, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2838337.

M.-Y. Li, Y.-L. Ban, Z.-Q. Xu, J. Guo, Z.-F. Yu, “Tri-polarized 12-antenna MIMO array for future 5G smartphone applications,” IEEE Access, vol. 6, pp. 6160–6170, 2018, doi: https://doi.org/10.1109/ACCESS.2017.2781705.

M. Abdullah, S. H. Kiani, A. Iqbal, “Eight element multiple-input multiple-output (MIMO) antenna for 5G mobile applications,” IEEE Access, vol. 7, pp. 134488–134495, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2941908.

L. Cui, J. Guo, Y. Liu, C.-Y.-D. Sim, “An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 10, pp. 2095–2099, 2019, doi: https://doi.org/10.1109/LAWP.2019.2937851.

N. O. Parchin et al., “Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications,” IEEE Access, vol. 7, pp. 15612–15622, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2893112.

W. Hu et al., “Dual-band ten-element MIMO array based on dual-mode IFAs for 5G terminal applications,” IEEE Access, vol. 7, pp. 178476–178485, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2958745.

J. Guo, L. Cui, C. Li, B. Sun, “Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7412–7417, 2018, doi: https://doi.org/10.1109/TAP.2018.2872130.

K.-L. Wong, J.-Y. Lu, L.-Y. Chen, W.-Y. Li, Y.-L. Ban, “8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 174–181, 2016, doi: https://doi.org/10.1002/mop.29527.

Q. Kewei, G. Decheng, “Compact tunable network for closely spaced antennas with high isolation,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 65–69, 2016, doi: https://doi.org/10.1002/mop.29495.

J. Baek, J. Choi, “The design of a LTE/MIMO antenna with high isolation using a decoupling network,” Microw. Opt. Technol. Lett., vol. 56, no. 9, pp. 2187–2191, 2014, doi: https://doi.org/10.1002/mop.28551.

J. Deng, J. Li, L. Zhao, L. Guo, “A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2270–2273, 2017, doi: https://doi.org/10.1109/LAWP.2017.2713986.

A. Ramachandran, S. Valiyaveettil Pushpakaran, M. Pezholil, V. Kesavath, “A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1196–1199, 2016, doi: https://doi.org/10.1109/LAWP.2015.2499322.

Z. Liu et al., “Isolation enhancement of patch antenna array via metamaterial integration,” Microw. Opt. Technol. Lett., vol. 58, no. 10, pp. 2321–2325, 2016, doi: https://doi.org/10.1002/mop.30033.

A. Zhao, Z. Ren, “Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals,” IEEE Access, vol. 7, pp. 93761–93771, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2913466.

Z. Ren, A. Zhao, “Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications,” IEEE Access, vol. 7, pp. 82288–82296, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2923666.

J. Li et al., “Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals,” IEEE Access, vol. 7, pp. 71636–71644, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2908969.

I. R. R. Barani, K.-L. Wong, Y.-X. Zhang, W.-Y. Li, “Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4x4 5G MIMO operation,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 2646–2657, 2020, doi: https://doi.org/10.1109/TAP.2019.2957967.

D. Q. Liu, M. Zhang, H. J. Luo, H. L. Wen, J. Wang, “Dual-band platform-free PIFA for 5G MIMO application of mobile devices,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6328–6333, 2018, doi: https://doi.org/10.1109/TAP.2018.2863109.

K.-L. Wong, C.-Y. Tsai, J.-Y. Lu, “Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1765–1778, 2017, doi: https://doi.org/10.1109/TAP.2017.2670534.

H. Wang, R. Zhang, Y. Luo, G. Yang, “Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals,” IEEE Access, vol. 8, pp. 19433–19449, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2967651.

M. A. Fakih, A. Diallo, P. Le Thuc, R. Staraj, O. Mourad, E. A. Rachid, “Optimization of efficient dual band PIFA system for MIMO half-duplex 4G/LTE and full-duplex 5G communications,” IEEE Access, vol. 7, pp. 128881–128895, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2940556.

A. Ren, Y. Liu, C.-Y.-D. Sim, “A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone,” IEEE Trans. Antennas Propag., vol. 67, no. 10, pp. 6430–6438, 2019, doi: https://doi.org/10.1109/TAP.2019.2920306.

J. Huang, G. Dong, J. Cai, H. Li, G. Liu, “A quad-port dual-band MIMO antenna array for 5G smartphone applications,” Electronics, vol. 10, no. 5, p. 542, 2021, doi: https://doi.org/10.3390/electronics10050542.

J. Huang, G. Dong, Q. Cai, Z. Chen, L. Li, G. Liu, “Dual-band MIMO antenna for 5G/WLAN mobile terminals,” Micromachines, vol. 12, no. 5, p. 489, 2021, doi: https://doi.org/10.3390/mi12050489.

M. A. Jamshed, M. Ur-Rehman, J. Frnda, A. A. Althuwayb, A. Nauman, K. Cengiz, “Dual band and dual diversity four-element MIMO dipole for 5G handsets,” Sensors, vol. 21, no. 3, p. 767, 2021, doi: https://doi.org/10.3390/s21030767.

N. Ojaroudi Parchin, H. J. Basherlou, Y. I. A. Al-Yasir, R. A. Abd-Alhameed, “A design of antenna array with improved performance for future smartphones,” Prog. Electromagn. Res. C, vol. 101, pp. 1–12, 2020, doi: https://doi.org/10.2528/PIERC20012003.

P. V. Naidu et al., “A compact four-port high isolation hook shaped ACS fed mimo antenna for dual frequency band applications,” Prog. Electromagn. Res. C, vol. 113, pp. 69–82, 2021, doi: https://doi.org/10.2528/PIERC21042701.

S. H. Kiani et al., “MIMO antenna system for modern 5G handheld devices with healthcare and high rate delivery,” Sensors, vol. 21, no. 21, p. 7415, 2021, doi: https://doi.org/10.3390/s21217415.

S. Saxena, B. K. Kanaujia, S. Dwari, S. Kumar, H. C. Choi, K. W. Kim, “Planar four-port dual circularly-polarized MIMO antenna for sub-6 GHz band,” IEEE Access, vol. 8, pp. 90779–90791, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2993897.

H. S. Alhaqbani, M. M. Bait-Suwailam, M. A. Aldhaeebi, T. S. Almoneef, “Wideband diversity MIMO antenna design with hexagonal slots for 5G smart mobile terminals,” Prog. Electromagn. Res. C, vol. 120, pp. 105–117, 2022, doi: https://doi.org/10.2528/PIERC22031604.

Z. Ji et al., “Low mutual coupling design for 5G MIMO antennas using multi-feed technology and its application on metal-rimmed mobile phones,” IEEE Access, vol. 9, pp. 151023–151036, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3126640.

H. Zhu, X. Guan, B. Ren, C. Wang, “Dual‐band eight‐element MIMO antenna consisted of tightly arranged hybrid antenna pairs for 5G smartphone,” Int. J. RF Microw. Comput. Eng., vol. 31, no. 12, 2021, doi: https://doi.org/10.1002/mmce.22886.

Z. Yu, Y. Chen, Y. Xie, N. Guo, “Eight-element with H-shaped slot MIMO antenna for 5G applications,” Prog. Electromagn. Res. Lett., vol. 90, pp. 7–13, 2020, doi: https://doi.org/10.2528/PIERL19110703.

M. Morsy, “4-port planar MIMO antenna using open-slot radiators for 5G new radio (NR) frequency bands N38 (2570 to 2620 MHz) and N41 (2496 MHz-2690 MHz) applications,” Prog. Electromagn. Res. Lett., vol. 104, pp. 87–94, 2022, doi: https://doi.org/10.2528/PIERL22021401.

H. Wang, M. Wang, F. Nian, Y. Luo, G. Yang, “Small‐size four‐element antenna system for 2×2 LTE LB and 4×4 LTE M/HB MIMO operations in 5G mobile terminals,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 9, 2020, doi: https://doi.org/10.1002/mmce.22328.

S. Loya, H. Khan, “Complementary split ring resonator based massive MIMO antenna system for 5G wireless applications,” Prog. Electromagn. Res. C, vol. 116, pp. 81–93, 2021, doi: https://doi.org/10.2528/PIERC21072802.

M. Y. Muhsin, A. J. Salim, J. K. Ali, “A compact self-isolated MIMO antenna system for 5G mobile terminals,” Comput. Syst. Sci. Eng., vol. 42, no. 3, pp. 919–934, 2022, doi: https://doi.org/10.32604/csse.2022.023102.

L. Guo, Z. Liu, H. Liu, D. Huang, Z. Du, “Wideband eight‐element antenna for 5G metal frame mobile phone applications,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 12, 2020, doi: https://doi.org/10.1002/mmce.22442.

L. Sun, Y. Li, Z. Zhang, H. Wang, “Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3423–3432, 2020, doi: https://doi.org/10.1109/TAP.2019.2963664.

M. Y. Muhsin, A. J. Salim, J. K. Ali, “Compact MIMO antenna designs based on hybrid fractal geometry for 5G smartphone applications,” Prog. Electromagn. Res. C, vol. 118, pp. 247–262, 2022, doi: https://doi.org/10.2528/PIERC22012808.

S. H. Kiani et al., “Eight element side edged framed MIMO antenna array for future 5G smart phones,” Micromachines, vol. 11, no. 11, p. 956, 2020, doi: https://doi.org/10.3390/mi11110956.

Z. Faydhe Al-Azzawi, R. K. AbdulSattar, M. Muhsin, M. Abdulrazzaq, A. Salim, J. K. Ali, “Designing eight-port antenna array for multi-band MIMO applications in 5G smartphones,” J. Telecommun. Inf. Technol., vol. 4, no. 2023, pp. 18–24, 2023, doi: https://doi.org/10.26636/jtit.2023.4.1297.

А. Кумар, “Компактная 4x4 MIMO антенна для UWB устройств с копланарным питанием и подавлением Wi-Fi и WLAN,” Известия вузов. Радиоэлектроника, vol. 64, no. 2, pp. 108–116, 2021, doi: https://doi.org/10.20535/S0021347021020047.

M. Y. Muhsin, A. J. Salim, J. K. Ali, “An eight-element multi-band MIMO antenna system for 5G mobile terminals,” in AIP Conference Proceedings, 2023, 60005, doi: https://doi.org/10.1063/5.0105773.

Виготовлений прототип двосмугових антен PIFA з найкращою розв’язкою між двома елементами

Опубліковано

2023-06-30 — Оновлено 2023-06-30

Як цитувати

Мухсін, М. Я., Алі, Ф. М., Салім, А. Д., Мохамад, З. Ф., & Алі, Д. К. (2023). Методи розв’язки в антенах MIMO для мобільних пристроїв 5G (комплексний огляд). Вісті вищих учбових закладів. Радіоелектроніка, 66(6), 307–332. https://doi.org/10.20535/S0021347023040027

Номер

Розділ

Оглядові статті