Оптимізація відбивної інтелектуальної поверхні Х-діапазону з варакторним керуванням

Автор(и)

  • Гліб Задорожний Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського", Київ, Україна https://orcid.org/0009-0004-6882-8709
  • Фін-Ніклас Стапельфельд Технічний університет Брауншвейга, Брауншвейг, Німеччина https://orcid.org/0000-0001-6013-5108
  • Дмитро Олексійович Василенко Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського", Київ, Україна https://orcid.org/0000-0002-2114-6629
  • Вадим Іссаков Технічний університет Брауншвейга, Брауншвейг, Німеччина https://orcid.org/0000-0003-3450-8745

DOI:

https://doi.org/10.20535/S0021347022110012

Ключові слова:

інтелектуальна поверхня, Х-діапазон, алгоритм оптимізації, метаповерхня, елементарна комірка, діапазон зміни фази, втрати на відбиття, смуга пропускання, цілі оптимізації, X-діапазон, 6G

Анотація

Інтелектуальна поверхня, що реконфігурується RIS (Reconfigurable Intelligent Surface) — одне з можливих рішень для подолання викликів, які приносять мережі зв'язку 6G. Дизайн елементарної комірки для RIS багато в чому схожий на дизайн штучних магнітних провідників — обидва матеріали спрямовані на зміну фази відбитої хвилі. Однак RIS спрямовані на управління кутом відбиття із збереженням вимог до діаграм спрямованості, подібних до фазованих антенних решіток, таких як низькі бічні пелюстки і ширина діаграми спрямованості. У статті розглянуто критерії оптимізації інтелектуальних поверхонь: розміри елементарної комірки, діапазон перестройки фази, смуга частот і втрати. Запропоновано алгоритм оптимізації, який належним чином враховує критерії оптимізації RIS. За допомогою запропонованого алгоритму оптимізації спроектовано нову комірку для роботи інтелектуальної поверхні в Х-діапазоні частот.

Біографії авторів

Фін-Ніклас Стапельфельд, Технічний університет Брауншвейга, Брауншвейг

Інститут проектування КМОП

Вадим Іссаков, Технічний університет Брауншвейга, Брауншвейг

Інститут проектування КМОП

Посилання

F. Yang, P. Pitchappa, N. Wang, “Terahertz reconfigurable intelligent surfaces (RISs) for 6G communication links,” Micromachines, vol. 13, no. 2, p. 285, 2022, doi: https://doi.org/10.3390/mi13020285.

S. R. Hasan, S. Sabuj, “A comprehensive review on reconfigurable intelligent surface for 6G communications: Overview, deployment, control mechanism, application, challenges, and opportunities,” Preprint, doi: https://doi.org/10.36227/techrxiv.24624420.

Z. Zhang et al., “Active RIS vs. passive RIS: Which will prevail in 6G?,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, 2023, doi: https://doi.org/10.1109/TCOMM.2022.3231893.

G. Lubkowski, F. Hirtenfelder, B. Bandlow, R. Schuhmann, T. Weiland, “Macromodeling of parabolic double negative metamaterial antennas,” Frequenz, vol. 62, no. 3–4, 2008, doi: https://doi.org/10.1515/FREQ.2008.62.3-4.67.

M. Rahm, J.-S. Li, W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 1, pp. 1–27, 2013, doi: https://doi.org/10.1007/s10762-012-9946-2.

J. Carver, V. Reignault, F. Gadot, “Engineering of the metamaterial-based cut-band filter,” Appl. Phys. A, vol. 117, no. 2, pp. 513–516, 2014, doi: https://doi.org/10.1007/s00339-014-8694-7.

M. V. Mrvić, M. M. Potrebić, D. V. Tošić, “Compact H-plane dual-band bandstop waveguide filter,” J. Comput. Electron., vol. 16, no. 3, pp. 939–951, 2017, doi: https://doi.org/10.1007/s10825-017-1025-4.

S. Datta et al., “Negative index metamaterial lens for subwavelength microwave detection,” Sensors, vol. 21, no. 14, p. 4782, 2021, doi: https://doi.org/10.3390/s21144782.

M. Memarian, G. V Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl., vol. 2, no. 11, pp. e114–e114, 2013, doi: https://doi.org/10.1038/lsa.2013.70.

W. T. Chen, A. Y. Zhu, F. Capasso, “Flat optics with dispersion-engineered metasurfaces,” Nat. Rev. Mater., vol. 5, no. 8, pp. 604–620, 2020, doi: https://doi.org/10.1038/s41578-020-0203-3.

D. Kundu, A. Mohan, A. Chakrabarty, “Design of a conductive FSS based ultrathin absorber using impedance analysis method of equivalent circuit model,” in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), 2018, pp. 1–4, doi: https://doi.org/10.1109/INCAP.2018.8770792.

P. Tiwari, S. K. Pathak, V. Siju, “Design, development and characterization of resistive arm based planar and conformal metasurfaces for RCS reduction,” Sci. Reports, vol. 12, no. 1, p. 14992, 2022, doi: https://doi.org/10.1038/s41598-022-19075-x.

M. Janneh, A. De Marcellis, E. Palange, A. T. Tenggara, D. Byun, “Metasurface-based THz dual-band absorber sensor for the measurement of refractive index variations of chemical and biological substances,” in Proceedings of Eurosensors 2017, Paris, France, 3–6 September 2017, 2017, p. 558, doi: https://doi.org/10.3390/proceedings1040558.

H. Jeong, D. H. Le, D. Lim, R. Phon, S. Lim, “Reconfigurable metasurfaces for frequency selective absorption,” Adv. Opt. Mater., vol. 8, no. 13, 2020, doi: https://doi.org/10.1002/adom.201902182.

Z. Wei, H. Li, W. Xu, Y. Cao, “Dynamic control of ultrathin electromagnetic absorber using active high impedance metasurfaces,” Front. Phys., vol. 8, 2021, doi: https://doi.org/10.3389/fphy.2020.632902.

S. Oh, L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas,” Microw. Opt. Technol. Lett., vol. 48, no. 2, pp. 329–334, 2006, doi: https://doi.org/10.1002/mop.21341.

R. Dewan et al., “Artificial magnetic conductor for various antenna applications: An overview,” Int. J. RF Microw. Comput. Eng., vol. 27, no. 6, p. e21105, 2017, doi: https://doi.org/10.1002/mmce.21105.

X. Li, J. Yang, Y. Feng, M. Yang, M. Huang, “Compact and broadband antenna based on a step-shaped metasurface,” Opt. Express, vol. 25, no. 16, p. 19023, 2017, doi: https://doi.org/10.1364/OE.25.019023.

P. Saha, D. Mitra, S. K. Parui, “Control of gain and SAR for wearable antenna using AMC structure,” Radioengineering, vol. 30, no. 1, pp. 81–88, 2021, doi: https://doi.org/10.13164/re.2021.0081.

M. A. Abdelghany, M. Fathy Abo Sree, A. Desai, A. A. Ibrahim, “Gain improvement of a dual-band CPW monopole antenna for sub-6 GHz 5G applications using AMC structures,” Electronics, vol. 11, no. 14, p. 2211, 2022, doi: https://doi.org/10.3390/electronics11142211.

F. Mouhouche, A. Azrar, M. Dehmas, K. Djafer, “Gain enhancement of monopole antenna using AMC surface,” Adv. Electromagn., vol. 7, no. 3, pp. 69–74, 2018, doi: https://doi.org/10.7716/aem.v7i3.747.

M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, E. Limiti, “High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits,” Sci. Reports, vol. 10, no. 1, p. 4298, 2020, doi: https://doi.org/10.1038/s41598-020-61099-8.

Ł. Jopek, S. Hausman, P. Di Barba, “Optimization of an artificial magnetic conductor geometry using a paretian approach,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019, uri: https://ieeexplore.ieee.org/document/8740080.

S. Zhu, K. L. Ford, A. Tennant, R. J. Langley, “Small antenna over AMC surface with/out vias,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), 2012, pp. 2712–2715, doi: https://doi.org/10.1109/EuCAP.2012.6206113.

Q. Chen, H. Zhang, L.-C. Yang, X.-F. Zhang, Y.-C. Zeng, “Wideband and low axial ratio circularly polarized antenna using AMC-based structure polarization rotation reflective surface,” Int. J. Microw. Wirel. Technol., vol. 10, no. 9, pp. 1058–1064, 2018, doi: https://doi.org/10.1017/S1759078718000958.

G. C. Trichopoulos et al., “Design and evaluation of reconfigurable intelligent surfaces in real-world environment,” IEEE Open J. Commun. Soc., vol. 3, pp. 462–474, 2022, doi: https://doi.org/10.1109/OJCOMS.2022.3158310.

D. Wang et al., “Design of real-time tunable-focus active metasurfaces,” in 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2020, pp. 1–3, doi: https://doi.org/10.1109/NEMO49486.2020.9343489.

X. Wan, M. Q. Qi, T. Y. Chen, T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Reports, vol. 6, no. 1, p. 20663, 2016, doi: https://doi.org/10.1038/srep20663.

L. Dai et al., “Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results,” IEEE Access, vol. 8, pp. 45913–45923, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2977772.

B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur, “Active metasurface for reconfigurable reflectors,” Appl. Phys. A, vol. 124, no. 2, p. 104, 2018, doi: https://doi.org/10.1007/s00339-017-1502-4.

B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett., vol. 111, no. 21, 2017, doi: https://doi.org/10.1063/1.4998556.

B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express, vol. 26, no. 3, p. 2613, 2018, doi: https://doi.org/10.1364/OE.26.002613.

A. Araghi et al., “Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration,” IEEE Access, vol. 10, pp. 2646–2655, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3140278.

X. Pei et al., “RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, 2021, doi: https://doi.org/10.1109/TCOMM.2021.3116151.

K. Mensah-Bonsu, B. Yang, A. Eroglu, H. Xu, L. Qian, “Equivalent circuit model for varactor-loaded reconfigurable intelligent surfaces,” in 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 2022, pp. 1190–1191, doi: https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887171.

F. Venneri, S. Costanzo, G. Di Massa, “Design and validation of a reconfigurable single varactor-tuned reflectarray,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 635–645, 2013, doi: https://doi.org/10.1109/TAP.2012.2226229.

F. Venneri, L. Boccia, G. Angiulli, G. Amendola, G. Di Massa, “Analysis and design of passive and active microstrip reflectarrays,” Int. J. RF Microw. Comput. Eng., vol. 13, no. 5, pp. 370–377, 2003, doi: https://doi.org/10.1002/mmce.10101.

R. Feng, B. Ratni, J. Yi, H. Zhang, A. de Lustrac, S. N. Burokur, “Versatile metasurface platform for electromagnetic wave tailoring,” Photonics Res., vol. 9, no. 9, p. 1650, 2021, doi: https://doi.org/10.1364/PRJ.428853.

L. G. da Silva, Z. Chu, P. Xiao, A. Cerqueira S, “A varactor-based 1024-element RIS design for mm-waves,” Front. Commun. Networks, vol. 4, 2023, doi: https://doi.org/10.3389/frcmn.2023.1086011.

H. Rajabalipanah, A. Abdolali, S. Iqbal, L. Zhang, T. J. Cui, “Analog signal processing through space-time digital metasurfaces,” Nanophotonics, vol. 10, no. 6, pp. 1753–1764, 2021, doi: https://doi.org/10.1515/nanoph-2021-0006.

S. Tian, H. Liu, L. Li, “Design of 1-bit digital reconfigurable reflective metasurface for beam-scanning,” Appl. Sci., vol. 7, no. 9, p. 882, 2017, doi: https://doi.org/10.3390/app7090882.

D. Rotshild, A. Abramovich, “Ultra-wideband reconfigurable X-band and Ku-band metasurface beam-steerable reflector for satellite communications,” Electronics, vol. 10, no. 17, p. 2165, 2021, doi: https://doi.org/10.3390/electronics10172165.

J. Nie, Y.-Q. Tan, C.-L. Ji, R.-P. Liu, “Analysis of Ku-band steerable metamaterials reflectarray with tunable varactor diodes,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 709–713, doi: https://doi.org/10.1109/PIERS.2016.7734429.

B. Liu, Y. He, S. Wong, Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater., vol. 9, no. 4, 2021, doi: https://doi.org/10.1002/adom.202001689.

B. O. Zhu, J. Zhao, Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Reports, vol. 3, no. 1, p. 3059, 2013, doi: https://doi.org/10.1038/srep03059.

Y.-L. Sun, X.-G. Zhang, Q. Yu, W.-X. Jiang, T.-J. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull., vol. 65, no. 11, pp. 883–888, 2020, doi: https://doi.org/10.1016/j.scib.2020.03.016.

X. G. Zhang, D. Pan, W. X. Jiang, “Reconfigurable 2-bit digital coding metasurfaces in a non-contact way,” in 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2018, pp. 1–2, doi: https://doi.org/10.1109/CSQRWC.2018.8455578.

J. Zhang, X. Wei, I. D. Rukhlenko, H.-T. Chen, W. Zhu, “Electrically tunable metasurface with independent frequency and amplitude modulations,” ACS Photonics, vol. 7, no. 1, pp. 265–271, 2020, doi: https://doi.org/10.1021/acsphotonics.9b01532.

S. V. Hum, M. Okoniewski, R. J. Davies, “Realizing an electronically tunable reflectarray using varactor diode-tuned elements,” IEEE Microw. Wirel. Components Lett., vol. 15, no. 6, pp. 422–424, 2005, doi: https://doi.org/10.1109/LMWC.2005.850561.

S. V. Hum, M. Okoniewski, R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2200–2210, 2007, doi: https://doi.org/10.1109/TAP.2007.902002.

J. Y. Dai et al., “Wireless communications through a simplified architecture based on time‐domain digital coding metasurface,” Adv. Mater. Technol., vol. 4, no. 7, 2019, doi: https://doi.org/10.1002/admt.201900044.

S. Venkatesh, X. Lu, H. Saeidi, K. Sengupta, “A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips,” Nat. Electron., vol. 3, no. 12, pp. 785–793, 2020, doi: https://doi.org/10.1038/s41928-020-00497-2.

M. Rossanese, P. Mursia, A. Garcia-Saavedra, V. Sciancalepore, A. Asadi, X. Costa-Perez, “Designing, building, and characterizing RF switch-based reconfigurable intelligent surfaces,” in Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, 2022, pp. 841–843, doi: https://doi.org/10.1145/3495243.3558256.

F. Costa, A. Monorchio, S. Talarico, F. M. Valeri, “An active high-impedance surface for low-profile tunable and steerable antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 676–680, 2008, doi: https://doi.org/10.1109/LAWP.2008.2006070.

M. K. Hedayati et al., “Challenges in on-chip antenna design and integration with RF receiver front-end circuitry in nanoscale CMOS for 5G communication systems,” IEEE Access, vol. 7, pp. 43190–43204, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2905861.

I. Skyworks Solutions, “Varactor diode application note,” 2008. uri: https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/1-100/200824A.pdf.

C. A. Balanis, Antenna Theory: Analysis and Design. New Jersey: Wiley, 2016, uri: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

Топологія елементарної комірки Інтелектуальної поверхні RIS, що реконфігурується

Опубліковано

2023-11-27 — Оновлено 2023-11-27

Як цитувати

Задорожний, Г., Стапельфельд, Ф.-Н., Василенко, Д. О., & Іссаков, В. (2023). Оптимізація відбивної інтелектуальної поверхні Х-діапазону з варакторним керуванням. Вісті вищих учбових закладів. Радіоелектроніка, 66(11), 631–656. https://doi.org/10.20535/S0021347022110012

Номер

Розділ

Оригінальні статті