Підвищення ефективності антен міліметрового діапазону (огляд)
DOI:
https://doi.org/10.20535/S0021347022100016Ключові слова:
п’яте покоління, антена міліметрових хвиль, генетичний алгоритм, оптимізація методом рою частинок, PSO, MIMO технологія, антенна система, антенна решіткаАнотація
Діапазон міліметрових хвиль привертає увагу вчених і дослідників, завдяки його потенційній можливості реалізувати високі швидкості передачі даних до 10 Гбіт/с і доступності широкої смуги пропускання у порівнянні з мікрохвильовим діапазоном. Антени, що розглядаються, є головним компонентом будь-якої технології бездротового зв’язку. Протягом останнього десятиліття проводились великі та активні дослідні роботи, що були присвячені антенним системам. Отже, даний огляд дає детальний аналіз антен міліметрового діапазону, що застосовувались в попередніх і теперішніх дослідженнях, пов’язаних із застосуванням систем 5G (п’ятого покоління). Вивчались і досліджувались кілька підходів, таких як стекінг, інтегрований в підкладку хвилевод, MIMO, пасивні елементи, використання «надкладки» і підхід на основі антенної системи (антенної решітки). В той же час, в цій роботі розглядаються алгоритми оптимізації для антен міліметрових хвиль як засіб підвищення коефіцієнту підсилення, розширення смуги пропускання та зменшення розмірів.
Посилання
G. S. Karthikeya, S. K. Koul, “Insights into fabrication and measurements of PCB-based passive millimeter wave antennas,” IETE Tech. Rev., vol. 38, no. 6, pp. 710–717, 2021, doi: https://doi.org/10.1080/02564602.2020.1819892.
G. Chittimoju, U. D. Yalavarthi, “A comprehensive review on millimeter waves applications and antennas,” J. Phys. Conf. Ser., vol. 1804, no. 112205, 2021, doi: https://doi.org/10.1088/1742-6596/1804/1/012205.
T.-Y. Wu, T. Chang, “Interference reduction by millimeter wave technology for 5G-based green communications,” IEEE Access, vol. 4, pp. 10228–10234, 2016, doi: https://doi.org/10.1109/ACCESS.2016.2602318.
C. Seker, M. T. Guneser, T. Ozturk, “A review of millimeter wave communication for 5G,” in 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp. 1–5, doi: https://doi.org/10.1109/ISMSIT.2018.8567053.
D. Surender, M. A. Halimi, T. Khan, F. A. Talukdar, Y. M. M. Antar, “Circularly polarized DR-rectenna for 5G and Wi-Fi bands RF energy harvesting in smart city applications,” IETE Tech. Rev., vol. 39, no. 4, pp. 880–893, 2022, doi: https://doi.org/10.1080/02564602.2021.1923079.
M. I. Ahmed, M. F. Ahmed, “Design of 5G smart watch with millimeter wave wearable antenna,” in 2019 7th International Japan-Africa Conference on Electronics, Communications, and Computations, (JAC-ECC), 2019, pp. 132–135, doi: https://doi.org/10.1109/JAC-ECC48896.2019.9051339.
A. Banerjee et al., “Millimeter-wave transceivers for wireless communication, radar, and sensing : (invited paper),” in 2019 IEEE Custom Integrated Circuits Conference (CICC), 2019, pp. 1–11, doi: https://doi.org/10.1109/CICC.2019.8780147.
N. Kaur, S. Malhotra, “A review on significance of design parameters of microstrip patch antennas,” in 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), 2016, pp. 1–6, doi: https://doi.org/10.1109/WECON.2016.7993491.
F. A. Azhiri, B. M. Tazehkand, R. Abdolee, “PSO-based optimal beamforming in MmWave-NOMA systems with sparse antenna array,” Soft Comput., vol. 26, no. 19, pp. 10513–10526, 2022, doi: https://doi.org/10.1007/s00500-022-06918-y.
H. Guo, B. Makki, T. Svensson, “Genetic algorithm-based beam refinement for initial access in millimeter wave mobile networks,” Wirel. Commun. Mob. Comput., vol. 2018, pp. 1–10, 2018, doi: https://doi.org/10.1155/2018/5817120.
B. M. Zerihun, Y. Wondie, “Massive MIMO for 5G cellular networks: Potential benefits and challenges,” in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Cham: Springer, 2018, pp. 219–227.
O. M. Haraz, M. M. M. Ali, S. Alshebeili, A.-R. Sebak, “Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks,” in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, pp. 1532–1533, doi: https://doi.org/10.1109/APS.2015.7305155.
A. Abdellatif, S. Safavi-Naeini, M. Mohajer, “Novel low cost compact phased array antenna for millimeter-wave 3D beam scanning applications,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014, pp. 1145–1146, doi: https://doi.org/10.1109/APS.2014.6904899.
D. J. Bisharat, S. Liao, Q. Xue, “High gain and low cost differentially fed circularly polarized planar aperture antenna for broadband millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 33–42, 2016, doi: https://doi.org/10.1109/TAP.2015.2499750.
S. F. Jilani, A. Alomainy, “A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2983–2986, 2017, doi: https://doi.org/10.1109/LAWP.2017.2756560.
S. F. Jilani, A. Alomainy, “Millimeter-wave conformal antenna array for 5G wireless applications,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 1439–1440, doi: https://doi.org/10.1109/APUSNCURSINRSM.2017.8072762.
M. Mantash, T. A. Denidni, “Millimeter-wave beam-steering antenna array for 5G applications,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–3, doi: https://doi.org/10.1109/PIMRC.2017.8292713.
M. M. M. Ali, A.-R. Sebak, “Directive antennas for future 5G mobile wireless communications,” in 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017, pp. 1–4, doi: https://doi.org/10.23919/URSIGASS.2017.8105059.
H. Zhou, F. Aryanfar, “Millimeter-wave open ended SIW antenna with wide beam coverage,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, pp. 658–659, doi: https://doi.org/10.1109/APS.2013.6710989.
X. Bai, S.-W. Qu, S. Yang, J. Hu, Z.-P. Nie, “Millimeter-wave circularly polarized tapered-elliptical cavity antenna with wide axial-ratio beamwidth,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 811–814, 2016, doi: https://doi.org/10.1109/TAP.2015.2507171.
N. Ojaroudiparchin, M. Shen, G. F. Pedersen, “A 28 GHz FR-4 compatible phased array antenna for 5G mobile phone applications,” in 2015 International Symposium on Antennas and Propagation (ISAP), 2015, uri: https://ieeexplore.ieee.org/document/7447420.
A. S. Abd El-Hameed, A. Barakat, A. B. Abdel-Rahman, A. Allam, R. K. Pokharel, K. Yoshitomi, “Broadband printed-dipole antenna for future 5G applications and wireless communication,” in 2018 IEEE Radio and Wireless Symposium (RWS), 2018, pp. 106–108, doi: https://doi.org/10.1109/RWS.2018.8304959.
A. A. Adebomehin, S. D. Walker, “Ultra-wideband signals for high-resolution cognitive positioning techniques in 5G wireless,” in 2016 IEEE 37th Sarnoff Symposium, 2016, pp. 1–2, doi: https://doi.org/10.1109/SARNOF.2016.7846720.
M. Elkholy, S. Shakib, J. Dunworth, V. Aparin, K. Entesari, “A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS,” IEEE Microw. Wirel. Components Lett., vol. 28, no. 1, pp. 64–66, 2018, doi: https://doi.org/10.1109/LMWC.2017.2779832.
Q.-X. Chu, X.-R. Li, M. Ye, “High-gain printed log-periodic dipole array antenna with parasitic cell for 5G communication,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6338–6344, 2017, doi: https://doi.org/10.1109/TAP.2017.2723916.
Y. Rahayu, I. R. Mustofa, “Design of 2×2 MIMO microstrip antenna rectangular patch array for 5G wireless communication network,” in 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, pp. 2679–2683, doi: https://doi.org/10.1109/PIERS-FALL.2017.8293591.
P. Roy, R. K. Vishwakarma, A. Jain, R. Singh, “Multiband millimeter wave antenna array for 5G communication,” in 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), 2016, pp. 102–105, doi: https://doi.org/10.1109/ICETEESES.2016.7581361.
L. C. Paul, M. M. Alam, “Millimeter-wave hexagonal grid microstrip array antenna for 5G communication,” in 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), 2017, pp. 1–6, doi: https://doi.org/10.1109/EICT.2017.8275142.
M. Khalily, R. Tafazolli, T. A. Rahman, M. R. Kamarudin, “Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1305–1308, 2016, doi: https://doi.org/10.1109/LAWP.2015.2505781.
H. Zhou, “Phased array for millimeter-wave mobile handset,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014, pp. 933–934, doi: https://doi.org/10.1109/APS.2014.6904795.
J. J. H. Wang, “Wideband wide-scan millimeter-wave phased arrays for enhanced security/privacy and performance in 5G mobile wireless,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 1471–1472, doi: https://doi.org/10.1109/APUSNCURSINRSM.2017.8072778.
M. H. Novak, J. L. Volakis, F. A. Miranda, “Ultra-wideband array in PCB for millimeter-wave 5G and ISM,” in 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 2017, pp. 108–110, doi: https://doi.org/10.1109/IWAT.2017.7915330.
M. Asaadi, A. Sebak, “Gain and bandwidth enhancement of 2×2 square dense dielectric patch antenna array using a holey superstrate,” IEEE Antennas Wirel. Propag. Lett., pp. 1–1, 2017, doi: https://doi.org/10.1109/LAWP.2017.2679698.
S. Ershadi, A. Keshtkar, A. H. Abdelrahman, H. Xin, “Wideband high gain antenna subarray for 5G applications,” Prog. Electromagn. Res. C, vol. 78, pp. 33–46, 2017, doi: https://doi.org/10.2528/PIERC17061301.
M. M. M. Ali, A.-R. Sebak, “Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems,” in 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2016, pp. 1–2, doi: https://doi.org/10.1109/ANTEM.2016.7550213.
O. M. Haraz, M. M. Ashraf, S. Alshebili, “8x8 patch antenna array with polarization and space diversity for future 5G cellular applications,” in 2015 International Conference on Information and Communication Technology Research (ICTRC), 2015, pp. 258–261, doi: https://doi.org/10.1109/ICTRC.2015.7156471.
S. I. Orakwue, R. Ngah, T. A. Rahman, H. M. R. Al-Khafaji, “A steerable 28 GHz array antenna using branch line coupler,” in 2015 1st International Conference on Telematics and Future Generation Networks (TAFGEN), 2015, pp. 76–78, doi: https://doi.org/10.1109/TAFGEN.2015.7289579.
D. Kim, Y. Lim, H.-S. Yoon, S. Nam, “High-efficiency W-band electroforming slot array antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1854–1857, 2015, doi: https://doi.org/10.1109/TAP.2015.2398129.
N. Ghassemi, K. Wu, S. Claude, X. Zhang, J. Bornemann, “Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1648–1653, 2012, doi: https://doi.org/10.1109/TAP.2011.2180346.
Y. J. Cheng, Y. X. Guo, Z. G. Liu, “W-band large-scale high-gain planar integrated antenna array,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3370–3373, 2014, doi: https://doi.org/10.1109/TAP.2014.2310483.
N. Ghassemi, K. Wu, “High-efficient patch antenna array for E-band gigabyte point-to-point wireless services,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 1261–1264, 2012, doi: https://doi.org/10.1109/LAWP.2012.2224087.
R. Xie, J. Cao, R. Wang, X. Wang, Z. Xu, S. Zhu, “A study of dielectric resonator antenna array applied to 5G communication system,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 454–457, doi: https://doi.org/10.1109/PIERS.2016.7734363.
E. Li, X. J. Li, B.-C. Seet, X. Lin, “Ink-printed flexible wideband dipole array antenna for 5G applications,” Phys. Commun., vol. 43, p. 101193, 2020, doi: https://doi.org/10.1016/j.phycom.2020.101193.
M. A. Saada, T. Skaik, R. Alhalabi, “Design of efficient microstrip linear antenna array for 5G communications systems,” in 2017 International Conference on Promising Electronic Technologies (ICPET), 2017, pp. 43–47, doi: https://doi.org/10.1109/ICPET.2017.14.
O. M. Haraz, A. Elboushi, S. A. Alshebeili, A.-R. Sebak, “Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks,” IEEE Access, vol. 2, pp. 909–913, 2014, doi: https://doi.org/10.1109/ACCESS.2014.2352679.
M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi, M. R. Kamarudin, “A review of wideband reflectarray antennas for 5G communication systems,” IEEE Access, vol. 5, pp. 17803–17815, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2747844.
A. S. W. Ghattas, A. A. R. Saad, E. E. M. Khaled, “Compact patch antenna array for 60 GHz millimeter-wave broadband applications,” Wirel. Pers. Commun., vol. 114, no. 4, pp. 2821–2839, 2020, doi: https://doi.org/10.1007/s11277-020-07505-w.
I. Ahmad, H. Sun, U. Rafique, Z. Yi, “Triangular slot-loaded wideband planar rectangular antenna array for millimeter-wave 5G applications,” Electronics, vol. 10, no. 7, p. 778, 2021, doi: https://doi.org/10.3390/electronics10070778.
Y. El Gholb, M. El Bakkali, N. El Amrani El Idrissi, “Wide-band circular antenna for 5G applications,” in 2018 4th International Conference on Optimization and Applications (ICOA), 2018, pp. 1–4, doi: https://doi.org/10.1109/ICOA.2018.8370524.
G.-R. Su, E. S. Li, T.-W. Kuo, H. Jin, Y.-C. Chiang, K.-S. Chin, “79-GHz wide-beam microstrip patch antenna and antenna array for millimeter-wave applications,” IEEE Access, vol. 8, pp. 200823–200833, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3035750.
M. Khalily, R. Tafazolli, P. Xiao, A. A. Kishk, “Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641–4647, 2018, doi: https://doi.org/10.1109/TAP.2018.2845451.
A. Bondarik, D. Sjoberg, “Gridded parasitic patch stacked microstrip antenna with beam shift capability for 60 GHz band,” Prog. Electromagn. Res. B, vol. 62, pp. 319–331, 2015, doi: https://doi.org/10.2528/PIERB15012303.
H. Ullah, F. A. Tahir, “A broadband planar rhombus monopole antenna for 28 GHz millimeter-wave communications,” in 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018, pp. 120 (4 pp.)-120 (4 pp.), doi: https://doi.org/10.1049/cp.2018.0479.
B. Bahreini, H. Oraizi, N. Noori, S. Fakhte, “Design of a circularly polarized parasitic array with slot-coupled DRA with improved gain for the 5G mobile system,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 10, pp. 1802–1806, 2018, doi: https://doi.org/10.1109/LAWP.2018.2865682.
W. Quan, B. Yan, Z. Wang, J. Wang, “An E-type microstrip slot antenna with parasitic patches in Ka-band with LTCC technology,” in 2010 International Conference on Microwave and Millimeter Wave Technology, 2010, pp. 407–409, doi: https://doi.org/10.1109/ICMMT.2010.5524986.
T. H. Jang et al., “A 60-GHz low-profile, wide-band, and high-gain E-shaped patch array with parasitic patches,” in 2018 IEEE Radio and Wireless Symposium (RWS), 2018, pp. 42–44, doi: https://doi.org/10.1109/RWS.2018.8304941.
P. A. Dzagbletey, Y.-B. Jung, “Stacked microstrip linear array for millimeter-wave 5G baseband communication,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 5, pp. 780–783, 2018, doi: https://doi.org/10.1109/LAWP.2018.2816258.
A. El Hajj Hassan, N. Fadlallah, G. El Nashef, M. Rammal, E. Rachid, “Compact reconfigurable stacked patch antenna using liquid crystal for 5G networks,” in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), 2019, pp. 1–4, doi: https://doi.org/10.1109/MENACOMM46666.2019.8988523.
Y. He, M. Rao, Y. Liu, G. Jing, M. Xi, L. Zhao, “28/39-GHz dual-band dual-polarized millimeter wave stacked patch antenna array for 5G applications,” in 2020 International Workshop on Antenna Technology (iWAT), 2020, pp. 1–4, doi: https://doi.org/10.1109/iWAT48004.2020.1570609770.
Y. Li, K.-M. Luk, “Low-cost high-gain and broadband substrate- integrated-waveguide-fed patch antenna array for 60-GHz band,” IEEE Trans. Antennas Propag., vol. 62, no. 11, pp. 5531–5538, 2014, doi: https://doi.org/10.1109/TAP.2014.2350509.
T. Djerafi, O. Kramer, N. Ghassemi, A. B. Guntupalli, B. Youzkatli-El-Khatib, K. Wu, “Innovative multilayered millimetre-wave antennas for multi-dimensional scanning and very small footprint applications,” in 2012 6th European Conference on Antennas and Propagation (EUCAP), 2012, pp. 2583–2587, doi: https://doi.org/10.1109/EuCAP.2012.6206549.
C. Di Paola, K. Zhao, S. Zhang, G. F. Pedersen, “SIW multibeam antenna array at 30 GHz for 5G mobile devices,” IEEE Access, vol. 7, pp. 73157–73164, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2919579.
I. Serhsouh, M. Himdi, H. Lebbar, “Design of coplanar slotted SIW antenna arrays for beam-tilting and 5G applications,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 4–8, 2020, doi: https://doi.org/10.1109/LAWP.2019.2948294.
Y.-X. Sun, D. Wu, X. S. Fang, N. Yang, “Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 8, pp. 1405–1409, 2020, doi: https://doi.org/10.1109/LAWP.2020.3003305.
M. Asaadi, A. Sebak, “High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 752–755, 2017, doi: https://doi.org/10.1109/LAWP.2016.2601900.
I. Herrero-Sebastian, C. Benavente-Peces, “Wideband SIW slot-array design based on reflection-slope-synthesis method for 5G services,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 12, pp. 2082–2086, 2020, doi: https://doi.org/10.1109/LAWP.2020.3022838.
B. Hasan, K. Raza, “Dual band slotted printed circular patch antenna with superstrate and EBG structure for 5G applications,” Mehran Univ. Res. J. Eng. Technol., vol. 38, no. 1, pp. 227–238, 2019, doi: https://doi.org/10.22581/muet1982.1901.19.
S. Dellaoui, A. Kaabal, M. El Halaoui, A. Asselman, “Patch array antenna with high gain using EBG superstrate for future 5G cellular networks,” Procedia Manuf., vol. 22, pp. 463–467, 2018, doi: https://doi.org/10.1016/j.promfg.2018.03.071.
S. Farhat, F. Arshad, Y. Amin, J. Loo, “Wideband patch array antenna using superstrate configuration for future 5G applications,” Turkish J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1673–1685, 2020, doi: https://doi.org/10.3906/elk-1910-160.
M. Asaadi, I. Afifi, A.-R. Sebak, “High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications,” IEEE Access, vol. 6, pp. 38243–38250, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2854225.
T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013, doi: https://doi.org/10.1109/ACCESS.2013.2260813.
S. Mumtaz, J. Rodriguez, L. Dai, MmWave Massive MIMO: A Paradigm for 5G. Academic Press, 2016.
A. Ejaz, S. Mehak, W. Anwer, Y. Amin, J. Loo, H. Tenhunen, “Investigating a 28 GHz wide-band antenna and its MIMO configuration,” in 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE), 2019, pp. 7–10, doi: https://doi.org/10.1109/C-CODE.2019.8680992.
S. Faleh, J. B. Tahar, “Optimization of a new structure patch antenna for MIMO and 5G applications,” in 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2017, pp. 1–5, doi: https://doi.org/10.23919/SOFTCOM.2017.8115571.
S. A. Ali, M. Wajid, A. Kumar, M. Shah Alam, “Design challenges and possible solutions for 5G SIW MIMO and phased array antennas: A review,” IEEE Access, vol. 10, pp. 88567–88594, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3197226.
F. Wang, Z. Duan, Q. Li, Y. Wei, Y. Gong, “Compact wideband MIMO antenna for 5G communication,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 939–940, doi: https://doi.org/10.1109/APUSNCURSINRSM.2017.8072512.
P. M. Sunthari, R. Veeramani, “Multiband microstrip patch antenna for 5G wireless applications using MIMO techniques,” in 2017 First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), 2017, pp. 1–5, doi: https://doi.org/10.1109/ICRAAE.2017.8297241.
S.-T. Liu, Y.-W. Hsu, Y.-C. Lin, “A dual polarized cavity-backed aperture antenna for 5G mmW MIMO applications,” in 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 2015, pp. 1–5, doi: https://doi.org/10.1109/COMCAS.2015.7360476.
Y. Zhang, J.-Y. Deng, M.-J. Li, D. Sun, L.-X. Guo, “A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 4, pp. 747–751, 2019, doi: https://doi.org/10.1109/LAWP.2019.2901961.
S. Ullah, W.-H. Yeo, H. Kim, H. Yoo, “Development of 60-GHz millimeter wave, electromagnetic bandgap ground planes for multiple-input multiple-output antenna applications,” Sci. Reports, vol. 10, no. 1, p. 8541, 2020, doi: https://doi.org/10.1038/s41598-020-65622-9.
. Rusmono, E. Sandi, T. Marani, “Design of multiband MIMO antenna for 5G millimeterwave application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 852, no. 112154, 2020, doi: https://doi.org/10.1088/1757-899X/852/1/012154.
A. Manan, S. I. Naqvi, M. A. Azam, Y. Amin, J. Loo, H. Tenhunen, “MIMO antenna array for mm-wave 5G smart devices,” in 2019 22nd International Multitopic Conference (INMIC), 2019, pp. 1–5, doi: https://doi.org/10.1109/INMIC48123.2019.9022757.
A. Desai, C. D. Bui, J. Patel, T. Upadhyaya, G. Byun, T. K. Nguyen, “Compact wideband four element optically transparent MIMO antenna for mm-wave 5G applications,” IEEE Access, vol. 8, pp. 194206–194217, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3033314.
D. A. Sehrai et al., “A novel high gain wideband MIMO antenna for 5G millimeter wave applications,” Electronics, vol. 9, no. 6, p. 1031, 2020, doi: https://doi.org/10.3390/electronics9061031.
M. M. Kamal et al., “Infinity shell shaped MIMO antenna array for mm-wave 5G applications,” Electronics, vol. 10, no. 2, p. 165, 2021, doi: https://doi.org/10.3390/electronics10020165.
G. M. Amrutha, T. Sudha, “Millimeter wave doughnut slot MIMO antenna for 5G applications,” in TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 1220–1224, doi: https://doi.org/10.1109/TENCON.2019.8929658.
Z. Wani, M. P. Abegaonkar, S. K. Koul, “A 28-GHz Antenna for 5G MIMO applications,” Prog. Electromagn. Res. Lett., vol. 78, pp. 73–79, 2018, doi: https://doi.org/10.2528/PIERL18070303.
R. Hernadi, M. Alaydrus, “Dualband MIMO antena using stacked series array technique in mmwave region,” in 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 2020, pp. 413–416, doi: https://doi.org/10.1109/Comnetsat50391.2020.9328787.
S. K. Goudos, C. Kalialakis, R. Mittra, “Evolutionary algorithms applied to antennas and propagation: a review of state of the art,” Int. J. Antennas Propag., vol. 2016, pp. 1–12, 2016, doi: https://doi.org/10.1155/2016/1010459.
Z. Altman, R. Mittra, “Antenna optimization using the genetic algorithm,” in Computational Electromagnetics and Its Applications, 1997, pp. 53–79.
N. Jin, Y. Rahmat-Samii, “Particle swarm optimization for antenna designs in engineering electromagnetics,” J. Artif. Evol. Appl., vol. 2008, pp. 1–10, 2008, doi: https://doi.org/10.1155/2008/728929.
P. Saxena, A. Kothari, “Optimal pattern synthesis of linear antenna array using Grey Wolf optimization algorithm,” Int. J. Antennas Propag., vol. 2016, pp. 1–11, 2016, doi: https://doi.org/10.1155/2016/1205970.
V. S. Gangwar, A. K. Singh, H. Patidar, S. P. Singh, “Optimistic design of thinned planar antenna array for radar operating scenarios,” in 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), 2016, pp. 1–4, doi: https://doi.org/10.1109/MicroCom.2016.7522537.
B. Strait, “Antenna arrays with partially tapered amplitudes,” IEEE Trans. Antennas Propag., vol. 15, no. 5, pp. 611–617, 1967, doi: https://doi.org/10.1109/TAP.1967.1139022.
M. C. Viganó, G. Toso, G. Caille, C. Mangenot, I. E. Lager, “Sunflower array antenna with adjustable density taper,” Int. J. Antennas Propag., vol. 2009, pp. 1–10, 2009, doi: https://doi.org/10.1155/2009/624035.
S. Yang, L. Zhang, J. Fu, Z. Zheng, X. Zhang, A. Liao, “Design and optimization for 77 GHz series-fed patch array antenna based on genetic algorithm,” Sensors, vol. 20, no. 11, p. 3066, 2020, doi: https://doi.org/10.3390/s20113066.
A. H. Jabire, A. Abdu, S. Salisu, “Multiband millimeter wave t-shaped antenna with optimized patch parameter using particle swarm optimization,” Niger. J. Technol., vol. 36, no. 3, pp. 904–909, 2017, doi: https://doi.org/10.4314/njt.v36i3.33.
Z. Rosic, O. Mihic, D. Aleksic, D. Drajic, “Novel method for optimal synthesis of 5G millimeter wave linear antenna array,” Int. J. Antennas Propag., vol. 2017, pp. 1–6, 2017, doi: https://doi.org/10.1155/2017/6848234.
K. R. Mahmoud, A. M. Montaser, “Optimised 4 × 4 millimetre-wave antenna array with DGS using hybrid ECFO‐NM algorithm for 5G mobile networks,” IET Microwaves, Antennas Propag., vol. 11, no. 11, pp. 1516–1523, 2017, doi: https://doi.org/10.1049/iet-map.2016.0959.
K.-C. Lee, J.-Y. Jhang, “Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays,” J. Electromagn. Waves Appl., vol. 20, no. 14, pp. 2001–2012, 2006, doi: https://doi.org/10.1163/156939306779322747.
C.-N. Hu, A. Tsai, P. Lo, “The genetic algorithm for 5G MIMO auto-calibration,” in 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), 2019, pp. 1004–1006, doi: https://doi.org/10.1109/PIERS-Fall48861.2019.9021532.
S. K. Goudos, T. V. Yioultsis, A. D. Boursianis, K. E. Psannis, K. Siakavara, “Application of new hybrid jaya grey wolf optimizer to antenna design for 5G communications systems,” IEEE Access, vol. 7, pp. 71061–71071, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2919116.
S. K. Goudos, A. Tsiflikiotis, D. Babas, K. Siakavara, C. Kalialakis, G. K. Karagiannidis, “Evolutionary design of a dual band E-shaped patch antenna for 5G mobile communications,” in 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2017, pp. 1–4, doi: https://doi.org/10.1109/MOCAST.2017.7937640.
R. Jian, Y. Chen, Y. Cheng, Y. Zhao, “Millimeter wave microstrip antenna design based on swarm intelligence algorithm in 5G,” in 2017 IEEE Globecom Workshops (GC Wkshps), 2017, pp. 1–6, doi: https://doi.org/10.1109/GLOCOMW.2017.8269196.
Y. Aslan, J. Puskely, A. Roederer, A. Yarovoy, “Multiple beam synthesis of passively cooled 5G planar arrays using convex optimization,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3557–3566, 2020, doi: https://doi.org/10.1109/TAP.2019.2955885.
Y. Aslan, M. Candotti, A. Yarovoy, “Synthesis of multi-beam space-tapered linear arrays with side lobe level minimization in the presence of mutual coupling,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019, pp. 1–5.
A. Dejen, J. Jayasinghe, M. Ridwan, J. Anguera, “Synthesis of quadband mm-wave microstrip antenna using genetic algorithm for wireless application,” Technologies, vol. 11, no. 1, p. 14, 2023, doi: https://doi.org/10.3390/technologies11010014.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Вісті вищих учбових закладів. РадіоелектронікаИздатель журнала Известия высших учебных заведений. Радиоэлектроника (сокр. "Известия вузов. Радиоэлектроника"), Национальный технический университет Украины "Киевский политехнический институт", учитывает, что доступ автора к его статье является важным как для самого автора, так и для спонсоров его исследований. Мы представлены в базе издателей SHERPA/RoMEO как зеленый издатель (green publisher), что позволяет автору выполнять самоархивирование своей статьи. Однако важно, чтобы каждая из сторон четко понимала свои права. Просьба более детально ознакомиться с Политикой самоархивирования нашего журнала.
Политика оплаченного открытого доступа POA (paid open access), принятая в журнале, позволяет автору выполнить все необходимые требования по открытому доступу к своей статье, которые выдвигаются институтом, правительством или фондом при выделении финансирования. Просьба более детально ознакомиться с политикой оплаченного открытого доступа нашего журнала (см. отдельно).
Варианты доступа к статье:
1. Статья в открытом доступе POA (paid open access)
В этом случае права автора определяются лицензией CC BY (Creative Commons Attribution).
2. Статья с последующим доступом по подписке
В этом случае права автора определяются авторским договором, приведенным далее.
- Автор (каждый соавтор) уступает Издателю журнала «Известия высших учебных заведений. Радиоэлектроника» НТУУ «КПИ» на срок действия авторского права эксклюзивные права на материалы статьи, в том числе право на публикацию данной статьи издательством Аллертон Пресс, США (Allerton Press) на английском языке в журнале «Radioelectronics and Communications Systems». Передача авторского права охватывает исключительное право на воспроизведение и распространение статьи, включая оттиски, переводы, фото воспроизведения, микроформы, электронные формы (он- и оффлайн), или любые иные подобные формы воспроизведения, а также право издателя на сублицензирование третьим лицам по своему усмотрению без дополнительных консультаций с автором. При этом журнал придерживается Политики конфиденциальности.
- Передача прав включает право на обработку формы представления материалов с помощью компьютерных программам и систем (баз данных) для их использования и воспроизводства, публикации и распространения в электронном формате и внедрения в системы поиска (базы данных).
- Воспроизведение, размещение, передача или иное распространение или использование материалов, содержащихся в статье должно сопровождаться ссылкой на Журнал и упоминанием Издателя, а именно: название статьи, имя автора (соавторов), название журнала, номер тома, номер выпуска, копирайт авторов и издателя "© Национальный технический университет Украины "Киевский политехнический институт"; © автор(ы)".
- Автор (каждый соавтор) материалов сохраняет все права собственника материалов, включая патентные права на любые процессы, способы или методы и др., а также права на товарные знаки.
- Издатель разрешает автору (каждому соавтору) материалов следующее:
- Право пользоваться печатными или электронными вариантами материалов статьи в форме и содержании, принятыми Издателем для публикации в Журнале. Подробнее см. политики Оплаченного открытого доступа, подписки и самоархивирования.
- Право бесплатно копировать или передавать коллегам копию напечатанной статьи целиком или частично для их личного или профессионального использования, для продвижения академических или научных исследований или для учебного процесса или других информационных целей, не связанных с коммерческими целями.
- Право использовать материалы из опубликованной статьи в написанной автором (соавторами) книге, монографии, учебнике, учебном пособии и других научных и научно-популярных изданиях.
- Право использовать отдельные рисунки или таблицы и отрывки текста из материалов в собственных целях обучения или для включения их в другую работу, которая печатается (в печатном или электронном формате) третьей стороной, или для представления в электронном формате во внутренние компьютерные сети или на внешние сайты автора (соавторов).
- Автор (соавторы) соглашаются, что каждая копия материалов или любая ее часть, распространенная или размещенная ими в печатном или электронном формате, будет содержать указание на авторское право, предусмотренное в Журнале и полную ссылку на Журнал Издателя.
- Автор (соавторы) гарантирует, что материалы являются оригинальной работой и представлены впервые на рассмотрение только в этом Журнале и ранее не публиковались. Если материалы написаны совместно с соавторами, автор гарантирует, что проинформировал их относительно условий публикации материалов и получил их подписи или письменное разрешение подписываться от их имени.
- Если в материалы включаются отрывки из работ или имеются указания на работы, которые охраняются авторским правом и принадлежат третьей стороне, то автору необходимо получить разрешение владельца авторских прав на использование таких материалов в первом случае и сделать ссылку на первоисточник во втором.
- Автор гарантирует, что материалы не содержат клеветнических высказываний и не посягают на права (включая без ограничений авторское право, права на патент или торговую марку) других лиц и не содержат материалы или инструкции, которые могут причинить вред или ущерб третьим лицам. Автор (каждый соавтор) гарантирует, что их публикация не приведет к разглашению секретных или конфиденциальных сведений (включая государственную тайну). Подтверждением этого является Экспертное заключение (см. перечень документов в Правила для авторов).
- Издатель обязуется опубликовать материалы в случае получения статьей положительного решения редколлегии о публикации на основании внешнего рецензирования (см. Политика рецензирования).
- В случае публикации статьи на английском языке в журнале «Radioelectronics and Communications Systems» (Издатель: Аллертон Пресс, США, распространитель Springer) автору (соавторам) выплачивается гонорар после выхода последнего номера журнала года, в котором опубликована данная статья.
- Документ Согласие на публикацию, который подают русскоязычные авторы при подаче статьи в редакцию, является краткой формой данного договора, в котором изложены все ключевые моменты настоящего договора и наличие которого подтверждает согласие автора (соавторов) с ним. Аналогичным документом для англоязычных авторов является Copyright Transfer Agreement (CTA), предоставляемый издательством Allerton Press.
- Настоящий Договор вступает в силу в момент принятия статьи к публикации. Если материалы не принимаются к публикации или до публикации в журнале автор (авторы) отозвал работу, настоящий Договор не приобретает (теряет) силу.