Алгоритмы прямого и обратного ДКП малых порядков с уменьшенной мультипликативной сложностью

Автор(и)

  • Александр Павлович Царёв Западно-поморский технологический университет, Польща https://orcid.org/0000-0002-4513-4593
  • Марта Маковска Западно-поморский технологический университет, Польща
  • Павел Стшелец Западно-поморский технологический университет, Польща

DOI:

https://doi.org/10.20535/S0021347019110025

Ключові слова:

дискретное косинус-преобразование, ДКП, СБИС-ориентированный алгоритм, быстрые вычисления

Анотація

Дискретные ортогональные преобразования, такие как дискретное преобразование Фурье, дискретное преобразование Уолша, дискретное преобразование Хартли, пилоподобное преобразование, дискретное косинус-преобразование и т. д., являются важными инструментами численного анализа, обработки сигналов и статистических методов. Успешное использование этих преобразований объясняется наличием быстрых алгоритмов для их реализации. Особое место в арсенале дискретных ортогональных преобразований занимают прямое и обратное дискретное косинус-преобразование (ДКП). В статье предлагается ряд параллельных алгоритмов прямого и обратного ДКП. Их синтез основан на удачной факторизации матриц преобразования. Представлено несколько полностью параллельных алгоритмов реализации прямого и обратного ДКП малых порядков для N = {2, 3, 4, 5, 6, 7}.

Посилання

Ahmed, N.; Rao, K. R. Orthogonal Transforms for Digital Signal Processing. Springer, 1975. DOI: http://doi.org/10.1007/978-3-642-45450-9.

Elliott, Douglas F.; Rao, K. Ramamohan. Fast Transforms: Algorithms, Analyses, Applications. Academic Press, 1983.

Bi, Guoan; Zeng, Yonghong. Transforms and Fast Algorithms for Signal Analysis and Representations. Birkhäuser, 2004. DOI: http://doi.org/10.1007/978-0-8176-8220-0.

Blahut, R. E. Fast Algorithms for Digital Signal Processing. CUP, 2010. DOI: https://doi.org/10.1017/CBO9780511760921.

Ahmed, N.; Natarajan, T.; Rao, K. R. “Discrete cosine transform,” IEEE Trans. Comput., Vol. C-23, No. 1, p. 90-93, Jan. 1974. DOI: https://doi.org/10.1109/T-C.1974.223784.

Rao, K. R.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications.New York: Academic Press, 1990.

Britanak, V.; Yip, P. C.; Rao, K. R. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations. Amsterdam: Academic Press Inc., Elsevier Science, 2006. DOI: https://doi.org/10.1016/B978-0-12-373624-6.X5000-0.

Chitprasert, B.; Rao, K. R. “Discrete cosine transform filtering,” Signal Processing, Vol. 19, No. 3, p. 233-245, Mar. 1990. DOI: https://doi.org/10.1016/0165-1684(90)90115-F.

Ochoa-Dominguez, Humberto; Rao, K. R. Discrete Cosine Transform, 2nd ed. CRC Press, 2019.

Salomon, D. Data Compression: The Complete Reference, 3rd ed. Springer, 2004. DOI: http://doi.org/10.1007/978-1-84628-603-2.

Sayood, K. Introduction to Data Compression, 5th ed. Elsevier, 2006. URI: https://www.elsevier.com/books/introduction-to-data-compression/sayood/978-0-12-809474-7.

Puschel, M.; Moura, J. M. F. “Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs,” IEEE Trans. Signal Process., Vol. 56, No. 4, p. 1502-1521, April 2008. DOI: https://doi.org/10.1109/TSP.2007.907919.

Chang, S. F.; Messerschmitt, D. G. “A new approach to decoding and compositing motion-compensated DCT-based images,” Proc. of IEEE ICASSP, 27-30 Apr. 1993, Minneapolis, USA. IEEE, 1993. DOI: https://doi.org/10.1109/ICASSP.1993.319837.

Krikor, L.; Baba, S.; Arif, T.; Shaaban, Z. “Image encryption using DCT and stream cipher,” European J. Sci. Res., Vol. 32, No. 1, p. 48-58, 2009.

Ptáček, M. “Digitální zpracování a přenos obrazové informace,” Nakladatelství dopravy a spojů. Praha: NADAS, 1983.

Benoit, Herve. Digital Television, 2nd ed. Focal Press, 2002. URI: https://www.oreilly.com/library/view/digital-television-2nd/9780240516950/.

Fischer, W. Digital Television: A Practical Guide for Engineers. Springer Science & Business Media, 2004. DOI: http://doi.org/10.1007/978-3-662-05429-1.

Arnold, J.; Frater, M.; Pickering, M. Digital Television: Technology and Standards, 1st ed. Wiley-Interscience, 2007. URI: https://www.wiley.com/en-us/Digital+Television%3A+Technology+and+Standards-p-9780470173411.

Hernandez, J. R.; Amado, M.; Perez-Gonzalez, F. “DCT-domain watermarking techniques for still images: detector performance analysis and a new structure,” IEEE Trans. Image Process., Vol. 9, No. 1, p. 55-68, 2000. DOI: https://doi.org/10.1109/83.817598.

Bors, A. G.; Pitas, I.“Image watermarking using DCT domain constraints,” Proc. IEEE. Int. Conf. on Image Processing, 19 Sept. 1996, Lausanne, Switzerland. IEEE, 1996, p. 231-234. DOI: https://doi.org/10.1109/ICIP.1996.560426.

Suhail, M. A.; Obaidat, M. S. “Digital watermarking-based DCT and JPEG model,” IEEE Trans. Instrumentation Meas., Vol. 52, No. 5, p. 1640-1647, 2003. DOI: https://doi.org/10.1109/TIM.2003.817155.

Chu, W. C. “DCT-based image watermarking using subsampling,” IEEE Trans. Multimedia, Vol. 5, No. 1, p. 34-38, Mar. 2003. DOI: https://doi.org/10.1109/TMM.2003.808816.

Jeon, Jeonghee; Lee, Sang-Kwang; Ho, Yo-Sung. “A three-dimensional watermarking algorithm using the DCT transform of triangle strips,” Int. Workshop Digital Watermarking, IWDW 2003: Lecture Notes in Computer Science book series. LNCS, Vol. 2939, pp. 508-517. DOI: https://doi.org/10.1007/978-3-540-24624-4_41.

Chafii, Marwa; Coon, Justin P.; Hedges, Dene A. “DCT-OFDM with index modulation,” IEEE Commun. Lett., Vol. 21, No. 7, p. 1489-1492, 2017. DOI: https://doi.org/10.1109/LCOMM.2017.2682843.

Astharini, Dwi; Gunawan, Dadang. “Discrete cosine transform and pulse amplitude modulation for visible light communication with unequally powered multiple access,” Proc. of 2018 2nd Int. Conf. on Applied Electromagnetic Technology, AEMT, 9-12 Apr. 2018, Lombok, Indonesia. IEEE, 2018, pp. 1-5. DOI: https://doi.org/10.1109/AEMT.2018.8572430.

Chen, W.-H.; Smith, C.; Fralick, S. “A fast computational algorithm for the discrete cosine transform,” IEEE Trans. Commun., Vol. 25, No. 9, p. 1004-1009, 1977. DOI: https://doi.org/10.1109/TCOM.1977.1093941.

Lee, B. “A new algorithm to compute discrete cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 32, No. 6, p. 1243-1245, Dec. 1984. DOI: https://doi.org/10.1109/TASSP.1984.1164443.

Arai, Y.; Agui, T.; Nakajima, M. “A fast DCT-SQ scheme for images,” IEICE Trans. Fundamentals Electron., Commun. Computer Sci., Vol. 71, No. 11, p. 1095-1097, 1988. URI: https://scinapse.io/papers/2062271532.

Loeffler, C.; Ligtenberg, A.; Moschytz, G. S. “Practical fast 1-D DCT algorithms with 11 multiplications,” Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, 23-26 May 1989, Glasgow, UK. IEEE, 1989, pp. 988-991. DOI: https://doi.org/10.1109/ICASSP.1989.266596.

Kok, C. W. “Fast algorithm for computing discrete cosine transform,” IEEE Trans. Signal Processing, Vol. 45, No. 3, p. 757-760, 1997. DOI: https://doi.org/10.1109/78.558495.

Feig, E.; Winograd, S. “Fast algorithms for the discrete cosine transform,” IEEE Trans. Signal Processing, Vol. 40, No. 9, p. 2174-2193, 1992. DOI: https://doi.org/10.1109/78.157218.

Tseng, B.; Miller, W. “On computing the discrete cosine transform,” IEEE Trans. Comput., Vol. C-27, No. 10, p. 966-968, 1978. DOI: https://doi.org/10.1109/TC.1978.1674977.

Makhoul, J. “A fast cosine transform in one and two dimensions,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 28, No. 1, p. 27-34, 1980. DOI: https://doi.org/10.1109/TASSP.1980.1163351.

Vetterli, M.; Nussbaumer, H. J. “Simple FFT and DCT algorithms with reduced number of operations,” Signal Process., Vol. 6, No. 4, p. 267-278, 1984. DOI: https://doi.org/10.1016/0165-1684(84)90059-8.

Malvar, H. S. “Fast computation of discrete cosine transform through fast Hartley transform,” Electron. Lett., Vol. 22, No. 7, p. 352-353, 1986. DOI: https://doi.org/10.1049/el:19860239.

Haque, M. “A two-dimensional fast cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 33, No. 6, p. 1532-1539, 1985. DOI: https://doi.org/10.1109/TASSP.1985.1164737.

Hou, H. S. “A fast recursive algorithm for computing the discrete cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 35, No. 10, p. 1455-1461, 1987. DOI: https://doi.org/10.1109/TASSP.1987.1165060.

Wu, H. R.; Paoloni, F. J. “The structure of vector radix fast Fourier transforms,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 9, p. 1415-1424, 1989. DOI: https://doi.org/10.1109/29.31295.

Chan, S. C.; Ho, K. L. “Direct methods for computing discrete sinusoidal transforms,” IEEE Proc. F: Radar Signal Process., Vol. 137, No. 6, p. 433-442, Dec. 1990. DOI: https://doi.org/10.1049/ip-f-2.1990.0063.

Cho, NamIk; Lee, San Uk. “Fast algorithm and implementation of 2-D discrete cosine transform,” IEEE Trans. Circuits Syst., Vol. 38, No. 3, p. 297-305, 1991. DOI: https://doi.org/10.1109/31.101322.

Christopoulos, C. A.; Skodras, A. N. “On the computation of the fast cosine transform,” Proc. ECCTD-Circuit Theory and Design, 1993, p. 1037-1042.

Chan, Y.-H.; Siu, W.-C. “Mixed-radix discrete cosine transform,” IEEE Trans. Signal Process., Vol. 41, No. 11, p. 3157-3161, 1993. DOI: https://doi.org/10.1109/78.257281.

Chang, Yu-Tai; Wang, Chin-Liang. “A new fast DCT algorithm and its systolic VLSI implementation,” IEEE Trans. Circuits Systems II: Analog Digital Signal Processing, Vol. 44, No. 11, p. 959-962, 1997. DOI: https://doi.org/10.1109/82.644050.

Jeong, Y.; Lee, I.; Kim, H. S.; Park, K. T. “Fast DCT algorithm with fewer multiplication stages,” Electron. Lett., Vol. 34, No. 8, p. 723-724, 1998. DOI: https://doi.org/10.1049/el:19980533.

Kwak, J.; You, J. “One- and two-dimensional constant geometry fast cosine transform algorithms and architectures,” IEEE Trans. Signal Processing, Vol. 47, No. 7, p. 2023-2034, 1999. DOI: https://doi.org/10.1109/78.771049.

Takala, J.; Akopian, D.; Astola, J.; Saarinen, J. “Constant geometry algorithm for discrete cosine transform,” IEEE Trans. Signal Processing, Vol. 48, No. 6, p. 1840-1843, 2000. DOI: https://doi.org/10.1109/78.845951.

Bi, G.; Li, G.; Ma, K.-K.; Tan, T. C. “On the computation of two-dimensional DCT,” IEEE Trans. Signal Process., Vol. 48, No. 4, p. 1171-1183, Apr. 2000. DOI: https://doi.org/10.1109/78.827550.

Guo, Jiun-In. “A low cost 2-D inverse discrete cosine transform design for image compression,” Proc. of 2001 IEEE Int. Symp. on Circuits and Systems, 6-9 May 2001, Sydney, Australia. IEEE, 2001, Vol. 4, pp. 658-661. DOI: https://doi.org/10.1109/ISCAS.2001.922323.

Shao, X.; Johnson, S. G. “Type-II/III DCT/DST algorithms with reduced number of arithmetic operations,” Signal Processing, Vol. 88, No. 6, p. 1553-1564, 2008. DOI: https://doi.org/10.1016/j.sigpro.2008.01.004.

Pennebaker, W. B.; Mitchell, J. L. JPEG still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1993. URI: https://www.springer.com/gp/book/9780442012724.

Lee, Pei-Zong; Huang, Fang-Yu. “An efficient prime-factor algorithm for the discrete cosine transform and its hardware implementations,” IEEE Trans. Signal Processing, Vol. 42, No. 8, p. 1996-2005, 1994. DOI: https://doi.org/10.1109/78.301838.

Tatsaki, A.; Dre, C.; Stouraitis, T.; Goutis, C. “On the computation of the prime factor DST,” Signal Processing, Vol. 42, No. 3, p. 231-236, 1995. DOI: https://doi.org/10.1016/0165-1684(94)00132-J.

Tatsaki, A.; Dre, C.; Stouraitis, T.; Goutis, C. “Prime-factor DCT algorithms,” IEEE Trans. Signal Processing, Vol. 43, No. 3, p. 772-776, 1995. DOI: https://doi.org/10.1109/78.370632.

Bi, Guoan; Zeng, Yonghong; Chen, Yen Qiu. “Prime factor algorithm for multidimensional discrete cosine transform,” IEEE Trans. Signal Processing, Vol. 49, No. 9, p. 2156-2161, 2001. DOI: https://doi.org/10.1109/78.942642.

Lu, S.-K.; Wu, C.-W.; Juo, S.-Y. “Design of easily testable VLSI arrays for discrete cosine transform,” Proc. of Twenty-Sixth Asilomar Conf. on Signals Systems and Computers, 26-28 Oct. 1992. Pacific Grove, USA. IEEE, 1992, Vol. 2, pp. 989-993. DOI: https://doi.org/10.1109/ACSSC.1992.269072.

Lee, S.-W.; Hsu, W.-H. “Parallel implementation of prime-factor discrete cosine transform on the orthogonal multiprocessor,” IEEE Trans. Circuits Systems Video Technol., Vol. 3, No. 2, p. 107-115, 1993. DOI: https://doi.org/10.1109/76.212717.

Murthy, N. Rama; Swamy, M. N. S. “On the real-time computation of DFT and DCT through systolic architectures,” IEEE Trans. Signal Processing, Vol. 42, No. 4, p. 988-991, 1994. DOI: https://doi.org/10.1109/78.285671.

Shin, K.-W.; Jeon, H.-W.; Kang, Y.-S. “An efficient VLSI implementation of vector-radix 2-D DCT using mesh-connected 2-D array,” Proc. of IEEE Int. Symp. on Circuits and Systems, 30 May-2 June 1994, London, UK. IEEE, 1994, Vol. 4, pp. 47-50. DOI: https://doi.org/10.1109/ISCAS.1994.409193.

Wang, Chin-Liang; Chen, Chang-Yu. “High-throughput VLSI architectures for the 1-D and 2-D discrete cosine transforms,” IEEE Trans. Circuits Systems Video Technology, Vol. 5, No. 1, p. 31-40, 1995. DOI: https://doi.org/10.1109/76.350776.

Hsia, Shih-Chang; Liu, Bin-Da; Yang, Jar-Ferr; Bai, Bor-Long. “VLSI implementation of parallel coefficient-by-coefficient two-dimensional IDCT processor,” IEEE Trans. Circuits Systems Video Technology, Vol. 5, No. 5, p. 396-406, 1995. DOI: https://doi.org/10.1109/76.473561.

Lim, Hyesook; Swartzlander, E. E. “An efficient systolic array for the discrete cosine transform based on prime-factor decomposition,” Proc. of 1995 Int. Conf. on Computer Design. VLSI in Computers and Processors, 2-4 Oct. 1995, Austin, USA. IEEE, 1995, pp. 644-649. DOI: https://doi.org/10.1109/ICCD.1995.528936.

Chang, Yu-Tai; Wang, Chin-Liang. “Systolic architecture for inverse discrete cosine transform,” Electron. Lett., Vol. 31, No 21, p. 1809-1811, 1995. URI: https://ieeexplore.ieee.org/abstract/document/8840699.

Madisetti, A.; Willson, A. N. “A 100 MHz 2-D 8ґ8 DCT/IDCT processor for HDTV applications,” IEEE Trans. Circuits Systems Video Technol., Vol. 5, No. 2, p. 158-165, 1995. DOI: https://doi.org/10.1109/76.388064.

Srinivasan, V.; Liu, K. J. R. “VLSI design of high-speed time-recursive 2-D DCT/IDCT processor for video applications,” IEEE Trans. Circuits Syst. Video Technol., Vol. 6, No. 1, p. 87-96, 1996. DOI: https://doi.org/10.1109/76.486423.

Schimpfle, C. V.; Rieder, P.; Nossek, J. A. “A power efficient implementation of the discrete cosine transform,” Proc. of Thirty-First Asilomar Conf. on Signals, Systems and Computers, 2-5 Nov. 1997, Pacific Grove, USA. IEEE, 1997, Vol. 1, pp. 729-733. DOI: https://doi.org/10.1109/ACSSC.1997.680540.

Lee, Y.-P.; Chen, T.-H.; Chen, L.-G.; Chen, M.-J.; Ku, C.-W. “A cost-effective architecture for 8×8 two-dimensional DCT/IDCT using direct method,” IEEE Trans. Circuits Syst. Video Technol., Vol. 7, No. 3, p. 459-467, 1997. DOI: https://doi.org/10.1109/76.585925.

Chang, Yu-Tai; Wang, Chin-Liang. “A new fast DCT algorithm and its systolic VLSI implementation,” IEEE Trans. Circuits Systems II: Analog Digital Signal Processing, Vol. 44, No. 11, p. 959-962, 1997. DOI: https://doi.org/10.1109/82.644050.

BenAyed, M. A.; Dulau, L.; Nouel, P.; Berthoumieu, Y.; Masmoudi, N.; Kadionik, P.; Kamoun, L. “New design using a VHDL description for DCT based circuits,” Proc. of ICM’98, 16 Dec. 1998, Monastir, Tunisia. IEEE, 1998, pp. 87-90. DOI: https://doi.org/10.1109/ICM.1998.825575.

Chen, L.-G.; Jiu, J.-Y.; Chang, H.-C.; Lee, Y.-P.; Ku, C.-W. “A low power 2D DCT chip design using direct 2D algorithm,” Proc. of Asia and South Pacific Design Automation Conf., 13 Feb. 1998, Yokohama, Japan. IEEE, 1998, pp. 145-150. DOI: https://doi.org/10.1109/ASPDAC.1998.669434.

Lu, Chung-Yen; Wen, Kuei-Ann. “On the design of selective coefficient DCT module,” IEEE Trans. Circuits Systems Video Technology, Vol. 8, No. 2, p. 143-146, 1998. DOI: https://doi.org/10.1109/76.664099.

Hsiao, S.-F.; Shiue, W.-R.; Tseng, J.-M. “A cost-efficient and fully-pipelinable architecture for DCT/IDCT,” IEEE Trans. Consumer Electron., Vol. 45, No. 3, p. 515-525, 1999. DOI: https://doi.org/10.1109/30.793535.

Kim, K.; Koh, J.-S. “An area efficient DCT architecture for MPEG-2 video encoder,” IEEE Trans. Consumer Electron., Vol. 45, No. 1, p. 62-67, 1999. DOI: https://doi.org/10.1109/30.754418.

Chang, T.-S.; Kung, C.-S.; Jen, C.-W. “A simple processor core design for DCT/IDCT,” IEEE Trans. Circuits Syst. Video Technol., Vol. 10, No. 3, p. 439-447, 2000. DOI: https://doi.org/10.1109/76.836290.

Lim, Hyesook; Piuri, V.; Swartzlander, E. E. “A serial-parallel architecture for two-dimensional discrete cosine and inverse discrete cosine transforms,” IEEE Trans. Computers, Vol. 49, No. 12, p. 1297-1309, 2000. DOI: https://doi.org/10.1109/12.895848.

Jiang, Min; Luo, Yuan; Fu, Yiling; Yang, Bing; Zhao, Baoying; Wang, Xin-an; Sheng, Shimin; Zhang, Tianyi. “A low power 1D-DCT processor for MPEG-targeted real-time applications,” Proc. of IEEE Int. Symp. on Communications and Information Technology, 26-29 Oct. 2004, Sapporo, Japan. IEEE, 2004, Vol. 2, pp. 682-687. DOI: https://doi.org/10.1109/ISCIT.2004.1413802.

Mohanty, S. P.; Ranganathan, N.; Balakrishnan, K. “A dual voltage-frequency VLSI chip for image watermarking in DCT domain,” IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 53, No. 5, p. 394-398, 2006. DOI: https://doi.org/10.1109/TCSII.2006.870216.

Qureshi, F.; Garrido, M.; Gustafsson, O. “Unified architecture for 2, 3, 4, 5, and 7-point DFTs based on Winograd Fourier transform algorithm,” Electron. Lett., Vol. 49, No. 5, p. 348-349, 2013. DOI: https://doi.org/10.1049/el.2012.0577.

De Oliveira, H. M.; Cintra, R. J.; Campello de Souza, R. M. “A factorization scheme for some discrete Hartley transform matrices,” 1-10, 2015. arXiv:1502.01038.

Cariow, A.; Papliński, J.; Majorkowska-Mech, D. “Some structures of parallel VLSI-oriented processing units for implementation of small size discrete fractional Fourier transforms,” Electronics, Vol. 8, No. 5, p. 509, 2019. DOI: https://doi.org/10.3390/electronics8050509.

Reznik, Yu. A.; Chivukula, Ravi K. “Design of fast transforms for high-resolution image and video coding,” Proc. SPIE 7443, Applications of Digital Image Processing XXXII, 744312 (2 Sept. 2009). DOI: http://doi.org/10.1117/12.831216.

Britanak, V.; Rao, K. R. Cosine-/Sine-Modulated Filter Banks: General Properties, Fast Algorithms and Integer Approximations. Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-61080-1.

Tran, Trac D.; Liang, Jie; Tu, Chengjie. “Lapped transform via time-domain pre- and post-filtering,” IEEE Trans. Signal Processing, Vol. 51, No. 6, p. 1557-1571, 2003. DOI: https://doi.org/10.1109/TSP.2003.811222.

Ţariov, A.; Majorkowska-Mech, D. “The multilevel signal representation in discrete base of cosine functions,” Elektronika: konstrukcje technologie zastosowania, Vol. 48, No. 7, p. 20-21, 2007.

Chernov, V. M.; Chicheva, M. A. “One-step’ short-length DCT algorithms with data representation in the direct sum of the associative algebras,” in: Sommer, G.; Daniilidis, K.; Pauli, J. (eds.), Computer Analysis of Images and Patterns. CAIP 1997. Lecture Notes in Computer Science, 1997, Vol. 1296. pp. 590-596, Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/3-540-63460-6_167.

Ţariov, A. Algorytmiczne aspekty racjonalizacji obliczeń w cyfrowym przetwarzaniu sygnałów (in Polish) [Algorithmic aspects of computing rationalization in Digital Signal processing].WestPomeranianUniversity Press, 2012.

Cariow, A. “Strategies for the synthesis of fast algorithms for the computation of the matrix-vector products,” J. Signal Processing Theory Applications, No. 3, p. 1-19, 2014. DOI: http://doi.org/10.7726/jspta.2014.1001.

Graham, A. Kronecker Products and Matrix Calculus: With Applications.Chichester,England: Ellis Horwood Limited, 1981.

Regalia, P. A.; Mitra, S. K. “Kronecker products, unitary matrices and signal processing applications,” SIAM Review, Vol. 31, No. 4, p. 586-613, 1989. DOI: https://doi.org/10.1137/1031127.

Granata, J.; Conner, M.; Tolimieri, R. “The tensor product: A mathematical programming language for FFTs and other fast DSP operations,” IEEE Signal Process. Mag., Vol. 9, No. 1, p. 40-48, 1992. DOI: https://doi.org/10.1109/79.109206.

Опубліковано

2019-11-22

Як цитувати

Царёв, А. П., Маковска, М., & Стшелец, П. (2019). Алгоритмы прямого и обратного ДКП малых порядков с уменьшенной мультипликативной сложностью. Вісті вищих учбових закладів. Радіоелектроніка, 62(11), 662–677. https://doi.org/10.20535/S0021347019110025

Номер

Розділ

Оригінальні статті