Носимые печатные антенны на гибкой подложке для беспроводных нательных сетей медицинского назначения (обзор)

Автор(и)

DOI:

https://doi.org/10.20535/S0021347021070013

Ключові слова:

носимые печатные антенны, беспроводные нательные сети, WBAN, нательный, гибкая подложка, носимые антенны медицинского применения

Анотація

Беспроводные нательные сети WBAN (wireless body area network) обеспечивают связь с беспроводными устройствами и системами, находящимися на теле человека. Ключевым требованием к нательным антеннам является гибкость антенн для удобства их установки на теле. Носимые антенны изготавливаются на гибкой подложке, что дает возможность устанавливать антенны на теле человека. Благодаря тому, что эти антенны носят с собой, они используются во многих нательных приложениях. Характеристики возможности ношения также делают эти антенны подходящими для многих медицинских приложений на теле человека. В данной статье представлен технический обзор сетей WBAN, диапазонов частот WBAN, принципы работы носимых антенн, характеристики гибкой подложки, дизайн и разработка носимых антенн для медицинских приложений. Носимые антенны изготавливаются на текстильной основе. Подробно дан обзор свойств материалов различных гибких подложек. Из-за наличия воздуха в промежутках между текстильными тканями диэлектрическая проницаемость этих материалов очень низкая. Также представлен подробный анализ характеристик антенны, которые определяются свойствами гибкого материала подложки. Представлены разработки носимых антенн WBAN медицинского применения. В данной работе также рассматриваются вопросы проектирования, методы изготовления, поставленные задачи и предлагаемые решения для носимых печатных антенн.

Посилання

E. G. Lim et al., “Wearable textile substrate patch antennas,” Eng. Lett., vol. 22, no. 2, pp. 94–101, 2014, uri: http://www.engineeringletters.com/issues_v22/issue_2/EL_22_2_08.pdf.

T. U. Pathan, R. K. Karn, “Research of wearable textile antennas for WBAN applications,” Int. J. Eng. Adv. Technol., vol. 8, no. 6S3, pp. 1347–1351, 2019, doi: https://doi.org/10.35940/ijeat.F1237.0986S319.

S. Ayed, L. Chaari, A. Fares, “A survey on trust management for WBAN: Investigations and future directions,” Sensors, vol. 20, no. 21, p. 6041, 2020, doi: https://doi.org/10.3390/s20216041.

“Wireless Body Area Network-IEEE 802.15.6 WBAN Basics.” https://www.rfwireless-world.com/Tutorials/WBAN-IEEE-802-15-6-tutorial.html.

J. C. Wang, “Review of wearable antennas for WBAN applications,” IAENG Int. J. Comput. Sci., vol. 43, no. 4, pp. 474–480, 2016, uri: http://www.iaeng.org/IJCS/issues_v43/issue_4/IJCS_43_4_10.pdf.

C. A. Balanis, Antenna Theory: Analysis and Design. New Jersey: Wiley, 2016, uri: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

P. Kumar, “Computation of resonant frequency of gap-coupled ring microstrip antennas,” Int. J. Autom. Comput., vol. 11, no. 6, pp. 671–675, 2014, doi: https://doi.org/10.1007/s11633-014-0814-5.

I. Ang, B. L. Ooi, “An ultra-wideband stacked microstrip patch antenna,” Microw. Opt. Technol. Lett., vol. 49, no. 7, pp. 1659–1665, 2007, doi: https://doi.org/10.1002/mop.22555.

M. Ihamji, E. H. Abdelmounim, J. Zbitou, H. Bennis, M. Latrach, “Design of a miniature microstrip antenna with DGS structure for RFID tag,” in Lecture Notes in Networks and Systems, 2020, pp. 88–99.

M. Mabaso, P. Kumar, “A dual band patch antenna for bluetooth and wireless local area networks applications,” Int. J. Microw. Opt. Technol., vol. 13, no. 5, pp. 393–400, 2018, uri: https://www.ijmot.com/VOL-13-NO-5.aspx.

Д. Бора, Т. А. Шейк, С. Рой, “Компактная трехдиапазонная антенна с копланарным питанием и дефектной структурой экрана для GSM, WLAN и WiMAX,” Известия вузов. Радиоэлектроника, vol. 59, no. 7, p. 51, 2016, doi: https://doi.org/10.20535/S0021347016070050.

P. Kumar, “Design of low cross-polarized patch antenna for ultra-wideband applications,” Int. J. Commun. Antenna Propag., vol. 7, no. 4, p. 265, 2017, doi: https://doi.org/10.15866/irecap.v7i4.10435.

K. K. Kumar, M. Pavani, “Design of a compact rectangular patch antenna using defected ground structure,” Int. J. Commun. Antenna Propag., vol. 7, no. 4, p. 282, 2017, doi: https://doi.org/10.15866/irecap.v7i4.12389.

P. Kumar, “Single feed dual polarized patch antennas for ultra-wideband applications,” Int. Rev. Electr. Eng., vol. 14, no. 4, p. 284, 2019, doi: https://doi.org/10.15866/iree.v14i4.16154.

W. J. Krzysztofik, T. N. Cao, “Metamaterials in application to improve antenna parameters,” in Metamaterials and Metasurfaces, IntechOpen, 2019.

К. Инамдар, Е. П. Коста, С. С. Патнаик, “Микрополосковая антенна на подложке из перекрестного метаматериала с улучшенными усилением и широкополосностью,” Известия вузов. Радиоэлектроника, vol. 58, no. 2, pp. 26–35, 2015, doi: https://doi.org/10.20535/S002134701502003X.

B. T. P. Madhav, A. V. Chaitanya, R. Jayaprada, M. Pavani, “Circular monopole slotted antenna with FSS for high gain applications,” ARPN J. Eng. Appl. Sci., vol. 11, no. 15, pp. 9022–9028, 2016.

B. W. Ngobese, P. Kumar, “A high gain microstrip patch array for 5 GHz WLAN applications,” Adv. Electromagn., vol. 7, no. 3, pp. 93–98, 2018, doi: https://doi.org/10.7716/aem.v7i3.783.

S. G. Kirtania et al., “Flexible antennas: a review,” Micromachines, vol. 11, no. 9, p. 847, 2020, doi: https://doi.org/10.3390/mi11090847.

R. Salvado, C. Loss, R. Gonçalves, P. Pinho, “Textile materials for the design of wearable antennas: a survey,” Sensors, vol. 12, no. 11, pp. 15841–15857, 2012, doi: https://doi.org/10.3390/s121115841.

S. Zhu, R. Langley, “Dual-band wearable textile antenna on an EBG substrate,” IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 926–935, 2009, doi: https://doi.org/10.1109/TAP.2009.2014527.

N. Singh, A. K. Singh, V. K. Singh, “Design & performance of wearable ultra wide band textile antenna for medical applications,” Open Eng., vol. 5, no. 1, p. 0, 2015, doi: https://doi.org/10.1515/eng-2015-0012.

S. M. Shah, N. F. A. Kadir, Z. Z. Abidin, F. C. Seman, S. A. Hamzah, N. Katiran, “A 2.45 GHz semi-flexible wearable antenna for industrial, scientific and medical band applications,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 2, p. 814, 2019, doi: https://doi.org/10.11591/ijeecs.v15.i2.pp814-822.

A. Sivabalan, P. Jothilakshmi, “Micro strip wearable O-shaped reconfigurable antenna for medical applications,” Int. J. Recent Technol. Eng., vol. 8, no. 1, 2019.

A. Y. I. Ashyap, Z. Zainal Abidin, S. H. Dahlan, H. A. Majid, G. Saleh, “Metamaterial inspired fabric antenna for wearable applications,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 3, p. e21640, 2019, doi: https://doi.org/10.1002/mmce.21640.

B. Mohamadzade, R. M. Hashmi, R. B. V. B. Simorangkir, R. Gharaei, S. Ur Rehman, Q. H. Abbasi, “Recent advances in fabrication methods for flexible antennas in wearable devices: state of the art,” Sensors, vol. 19, no. 10, p. 2312, 2019, doi: https://doi.org/10.3390/s19102312.

Y. Li, Z. Zhang, Z. Feng, H. R. Khaleel, “Fabrication and Measurement Techniques of Wearable and Flexible Antennas,” 2014, pp. 7–23.

“Flexography.” https://www.csus.edu/indiv/c/cunninghamk/links/lectures/flexo_gravure.pdf.

“Evaporation.” http://www.fen.bilkent.edu.tr/~aykutlu/msn551/evaporation.

M. Nisha, S. Sai Shweta, G. T. Selvi, A. M. Bose, “Wearable textile patch antenna: with co-planar waveguide (CPW) feed for medical applications,” Int. J. Adv. Sci. Eng. Technol., vol. 6, no. 2, pp. 67–70, 2018, uri: http://ijaseat.iraj.in/paper_detail.php?paper_id=12445.

R. Kumar, J. Singh, B. S. Sohi, “Hexagonal shaped body wearable textile antenna on EBG substrate material,” Int. J. Comput. Sci. Mob. Comput., vol. 5, no. 6, pp. 260–266, 2016, uri: https://www.ijcsmc.com/docs/papers/June2016/V5I6201667.pdf.

H. Dawood, M. Zahid, H. Awais, S. Shoaib, A. Hussain, A. Jamil, “A high gain flexible antenna for biomedical applications,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2020, pp. 1–4, doi: https://doi.org/10.1109/ICECCE49384.2020.9179186.

C. Du, G. Jin, “A compact CPW-fed band-notched UWB-MIMO flexible antenna for WBAN application,” J. Electromagn. Waves Appl., vol. 35, no. 8, pp. 1046–1058, 2021, doi: https://doi.org/10.1080/09205071.2020.1868354.

A. Y. I. Ashyap et al., “Via-less electromagnetic band-gap-enabled antenna based on textile material for wearable applications,” PLOS ONE, vol. 16, no. 1, p. e0246057, 2021, doi: https://doi.org/10.1371/journal.pone.0246057.

A. Alomainy, Y. Hao, D. M. Davenport, “Parametric study of wearable antennas with varying distances from the body and different on-body positions,” in IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, 2007, pp. 84–89, doi: https://doi.org/10.1049/ic:20070552.

J. Li, Z. Nie, Y. Liu, L. Wang, Y. Hao, “Evaluation of propagation characteristics using the human body as an antenna,” Sensors, vol. 17, no. 12, p. 2878, 2017, doi: https://doi.org/10.3390/s17122878.

D. Wen, Y. Hao, M. O. Munoz, H. Wang, H. Zhou, “A compact and low-profile MIMO antenna using a miniature circular high-impedance surface for wearable applications,” IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 96–104, 2018, doi: https://doi.org/10.1109/TAP.2017.2773465.

M. M. Khan, “Compact planar inverted F antenna (PIFA) for smart wireless body sensor networks,” in Proceedings of 7th International Electronic Conference on Sensors and Applications, 2020, p. 8253, doi: https://doi.org/10.3390/ecsa-7-08253.

A. R. H. Alhawari, A. H. M. Almawgani, A. T. Hindi, H. Alghamdi, T. Saeidi, “Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging applications,” AIP Adv., vol. 11, no. 1, p. 015128, 2021, doi: https://doi.org/10.1063/5.0037232.

G. K. Das, S. Basu, B. Mandal, D. Mitra, R. Augustine, M. Mitra, “Gain‐enhancement technique for wearable patch antenna using grounded metamaterial,” IET Microwaves, Antennas Propag., vol. 14, no. 15, pp. 2045–2052, 2020, doi: https://doi.org/10.1049/iet-map.2020.0083.

D. Wen, Y. Hao, H. Wang, H. Zhou, “Design of a wideband antenna by manipulating characteristic modes of a metallic loop,” Microw. Opt. Technol. Lett., vol. 61, no. 2, pp. 513–518, 2019, doi: https://doi.org/10.1002/mop.31560.

D. Wen, Y. Hao, H. Wang, H. Zhou, “Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1437–1447, 2019, doi: https://doi.org/10.1109/TAP.2018.2884849.

Геометрия носимой антенны СШП

Опубліковано

2021-07-27 — Оновлено 2021-07-27

Як цитувати

Кумар, П., Али, Т., & Шарма, А. (2021). Носимые печатные антенны на гибкой подложке для беспроводных нательных сетей медицинского назначения (обзор). Вісті вищих учбових закладів. Радіоелектроніка, 64(7), 395–410. https://doi.org/10.20535/S0021347021070013

Номер

Розділ

Оглядові статті