Сравнительный анализ спектральных характеристик сигналов подповерхностных РЛС для оценки дорожного покрытия

Автор(и)

  • Дмитрий Олегович Батраков Харьковский национальный университет имени В. Н. Каразина, Ukraine https://orcid.org/0000-0002-6726-8162
  • Мария Станиславовна Антюфеева Харьковский национальный университет имени В. Н. Каразина, Ukraine https://orcid.org/0000-0002-6654-4794
  • Анжелика Г. Батракова Харьковский национальный автомобильно-дорожный университет, Ukraine https://orcid.org/0000-0002-4067-4371

DOI:

https://doi.org/10.20535/S0021347021050022

Ключові слова:

нерувнійний контроль, підповерхова РЛС

Анотація

В работе представлены результаты экспериментов по использованию сверхширокополосных РЛС подповерхностного зондирования (СШП РЛСПЗ) с трехантенными модулями для систем неразрушающего контроля. Использованные модули имеют различные значения центральных частот зондирующих СШП импульсов и различные конфигурации антенн. Цель проведенных экспериментов заключалась в отыскании наилучших значений параметров чувствительности. Другая задача состояла в оптимизации метода обработки сигналов, отраженных от плоскослоистых сред. Проведенный анализ полученных результатов показал пути улучшения качества неразрушающего контроля дорожного покрытия и других строительных структур при помощи СШП РЛСПЗ. Предлагаемый подход основан на ранее предложенном алгоритме поэтапного определения толщины слоев дорожного покрытия и использовании относительной диэлектрической проницаемости.

Посилання

H. Jol, Ed., Ground Penetrating Radar Theory and Applications. Amsterdam: Elsevier B.V., 2008, uri: https://www.elsevier.com/books/ground-penetrating-radar-theory-and-applications/jol/978-0-444-53348-7.

G. P. Pochanin, V. P. Ruban, P. V. Kholod, A. A. Shuba, A. G. Pochanin, A. A. Orlenko, “Enlarging of power budget of ultrawideband radar,” in 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013, pp. 213–216, doi: https://doi.org/10.1109/RAST.2013.6581203.

D. O. Batrakov, N. P. Zhuck, “Solution of a general inverse scattering problem using the distorted Born approximation and iterative technique,” Inverse Probl., vol. 10, no. 1, pp. 39–54, 1994, doi: https://doi.org/10.1088/0266-5611/10/1/004.

T. Saarenketo, “Electrical properties of road materials and subgrade soils and the use of ground penetrating radar in traffic infrastructure surveys,” 2006. uri: http://jultika.oulu.fi/files/isbn9514282221.pdf.

S. Pengcheng, “Development of algorithms for asphalt pavement compaction monitoring utilizing ground penetrating radar,” Urbana, 2014. uri: https://core.ac.uk/download/pdf/29175239.pdf.

“Smart Pavement Monitoring System. Report No. FHWA-HRT-12-072,” 2013. uri: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/12072/12072.pdf.

G. P. Arnold, F. Sing, T. Saarenketo, T. Saarenpaa, “Pavement moisture measurement to indicate risk to pavement life,” NZ Transp. Agency Res., no. Report 611, 2017, uri: https://www.nzta.govt.nz/resources/research/reports/611/.

Z. Dong et al., “Rapid detection methods for asphalt pavement thicknesses and defects by a vehicle-mounted ground penetrating radar (GPR) system,” Sensors, vol. 16, no. 12, p. 2067, 2016, doi: https://doi.org/10.3390/s16122067.

J. Hu, P. K. R. Vennapusa, D. J. White, I. Beresnev, “Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR,” Nondestruct. Test. Eval., vol. 31, no. 3, pp. 267–287, 2016, doi: https://doi.org/10.1080/10589759.2015.1111890.

L. Krysiński, J. Sudyka, “Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar,” Nondestruct. Test. Eval., vol. 27, no. 3, pp. 219–227, 2012, doi: https://doi.org/10.1080/10589759.2012.674525.

J. Sudyka, L. Krysiński, “Evaluation of homogeneity of thickness of new asphalt layers using GPR,” IOP Conf. Ser. Mater. Sci. Eng., vol. 356, no. 1, p. 012025, 2018, doi: https://doi.org/10.1088/1757-899X/356/1/012025.

T. Xia, D. Huston, “High speed ground penetrating radar for road pavement and bridge structural inspection and maintenance,” 2016. uri: https://www.uvm.edu/sites/default/files/Transportation-Research-Center/Reports/2020 and more/2016_-_High_Speed_Ground_Penetrating_Radar_for_Road_Pavement_and_Bridge_Structural_Inspection_and_Maintenance.pdf?t=qk1rlm.

D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, “Remote sensing of plane-layered media with losses using UWB signals,” in 2017 XI International Conference on Antenna Theory and Techniques (ICATT), 2017, pp. 370–373, doi: https://doi.org/10.1109/ICATT.2017.7972666.

A. De Coster, A. Van der Wielen, C. Grégoire, S. Lambot, “Evaluation of pavement layer thicknesses using GPR: A comparison between full-wave inversion and the straight-ray method,” Constr. Build. Mater., vol. 168, pp. 91–104, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.02.100.

P. Eskelinen, T. Pellinen, “Comparison of different radar technologies and frequencies for road pavement evaluation,” Constr. Build. Mater., vol. 164, pp. 888–898, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.01.124.

D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, “UWB signal processing during thin layers thickness assessment,” in 2016 IEEE Radar Methods and Systems Workshop (RMSW), 2016, pp. 36–39, doi: https://doi.org/10.1109/RMSW.2016.7778545.

R. A. Tarefder, M. U. Ahmed, “Ground penetrating radar for measuring thickness of an unbound layer of a pavement,” in Advances in Intelligent Systems and Computing, vol. 598, 2018, pp. 160–167.

D. Batrakov, A. Batrakova, M. Antyufeyeva, “Combined GPR data analysis technique for diagnostics of structures with thin near-surface layers,” Diagnostyka, vol. 19, no. 3, pp. 11–20, 2018, doi: https://doi.org/10.29354/diag/91489.

D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, “Inverse problems and UWB signals in biomedical engineering and remote sensing,” in 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 2016, pp. 148–151, doi: https://doi.org/10.1109/UWBUSIS.2016.7724174.

D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, “GPR data processing for evaluation of the subsurface cracks in road pavements,” in 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2017, pp. 1–6, doi: https://doi.org/10.1109/IWAGPR.2017.7996072.

D. O. Batrakov, M. S. Antyufeyeva, A. G. Batrakova, V. V. Troyanovsky, M. O. Pilicheva, “UWB signal processing for the road pavements assessment,” in 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2019, pp. 192–195, doi: https://doi.org/10.1109/UKRCON.2019.8879866.

T. Uno, S. Adachi, “Inverse scattering method for one-dimensional inhomogeneous layered media,” IEEE Trans. Antennas Propag., vol. 35, no. 12, pp. 1456–1466, 1987, doi: https://doi.org/10.1109/TAP.1987.1144033.

A. G. Tijhuis, C. van der Worm, “Iterative approach to the frequency-domain solution of the inverse-scattering problem for an inhomogeneous lossless dielectric slab,” IEEE Trans. Antennas Propag., vol. 32, no. 7, pp. 711–716, 1984, doi: https://doi.org/10.1109/TAP.1984.1143410.

D. O. Batrakov, “Quality and efficiency of data analysis in multifrequency radio-wave testing of laminated dielectrics,” Russ. J. Nondestruct. Test., vol. 34, no. 8, pp. 612–618, 1998.

T. M. Habashy, W. C. Chew, E. Y. Chow, “Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab,” Radio Sci., vol. 21, no. 4, pp. 635–645, 1986, doi: https://doi.org/10.1029/RS021i004p00635.

S. He, “Frequency and time domain Green function technique for nonuniform LCRG transmission lines with frequency-dependent parameters,” J. Electromagn. Waves Appl., vol. 7, no. 1, pp. 31–48, 1993, doi: https://doi.org/10.1163/156939393X01065.

D. O. Batrakov, N. P. Zhuk, “Method for testing of layer-non-homogeneous dielectrics using numerical solution of reverse problem dialing with dissipation in polarization parameters domain,” Defektoskopiya, no. 2, pp. 82–87, 1994.

S. Zhao, P. Shangguan, I. L. Al-Qadi, “Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data,” NDT E Int., vol. 73, pp. 1–7, 2015, doi: https://doi.org/10.1016/j.ndteint.2015.03.001.

L. Y. Astanin, A. A. Kostylev, Ultrawideband Radar Measurements: Analysis and Processing. The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK: IET, 1997, doi: https://doi.org/10.1049/PBRA007E.

L. Y. Astanin, M. V. Kipke, V. V. Kostyleva, “The structural features of ultrawideband signals,” in 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals, 2008, pp. 180–182, doi: https://doi.org/10.1109/UWBUS.2008.4669402.

D. Batrakov, A. Batrakova, S. Urdzik, R. Danielyan, “Nondestructive diagnostics and detection of subsurface cracks in non-rigid pavements with GPR,” Diagnostyka, vol. 22, no. 2, pp. 85–95, 2021, doi: https://doi.org/10.29354/diag/137915.

Георадар ТРФ-3

##submission.downloads##

Опубліковано

2021-05-29 — Оновлено 2021-05-29

Як цитувати

Батраков, Д. О., Антюфеева, М. С., & Батракова, А. Г. (2021). Сравнительный анализ спектральных характеристик сигналов подповерхностных РЛС для оценки дорожного покрытия. Вісті вищих учбових закладів. Радіоелектроніка, 64(5), 275–285. https://doi.org/10.20535/S0021347021050022

Номер

Розділ

Статті