УДК 621.315.592

МАРКОВСКИЙ Е. П.

ВЛИЯНИЕ РЕЖИМОВ ТЕРМООБРАБОТКИ НА УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ОМИЧЕСКОГО КОНТАКТА К МОНОКРИСТАЛЛАМ GAAS *P*-ТИПА

Исследовано значение удельного контактного сопротивления омических контактов к сильнолегированному полупроводнику ($2\cdot 10^{18}~{\rm cm}^{-3}$) GaAs p-типа, с многослойной структурой контакта — Au/TiB $_{\rm x}$ Ti. Результаты измерений показывают, что данная омическая система конкурентоспособна и имеет свои преимущества перед другими подобными омическими структурами.

Введение. Формирование омических контактов к арсениду галлия p-типа связано с трудностью подбора металла, с работой выхода большей, чем из полупроводника. Поэтому до настоящего времени остается актуальной задача создания омического контакта даже к сильнолегированному p^+ -GaAs, [1—11]. Цель данной работы — исследование влияния режимов термообработки на величину удельного сопротивления омического контакта $R_{\rm K}$, изготовленного на основе многослойной структуры — Au/TiB $_{\rm x}$ /Ti, к легированной кремнием до концентрации $2\cdot 10^{18}~{\rm cm}^{-3}$, полупроводниковой подложке GaAs p-типа, с плоской и текстурированой поверхностью, до и после термической обработки.

Образцы и метод измерений. Контактные слои создавались методом магнетронного распыления мишеней на предварительно обработанные методом фотонной очистки плоские и текстурированные поверхности p^+ -GaAs.

Слой титана толщиной $\sim\!100\,\text{Å}$ наносился на подогретую до 350 °C подложку, толщина буферного слоя TiB_{x} и металлизации Au составляли 800 и 3000 Å соответственно.

Контактные площадки диаметрами 20...180 мкм с шагом 20 мкм, и диаметром 400 мкм, формировались методом фотолитографии. Пластина разделялась на 3 части: исходную, отожженную в атмосфере водорода при 500 и 600 °C.

Расчет удельного контактного сопротивления производился по методу растирания тока (метод Коса—Стрека). Измерения производились на образцах с различной площадью контакта, различной текстуризацией поверхности полупроводника и температурной обработкой. Полученные значения удельного сопротивления омического контакта при различных режимах температурной обработки составили $0.8 \cdot 10^{-4}$, $1.08 \cdot 10^{-4}$, $1.22 \cdot 10^{-4}$ Ом·см², для исходной и отожженных при 500 и 600 °C соответственно.

Для определения удельного контактного сопротивления по измеренному полному сопротивлению R_0 экспериментальных образцов использовался метод растекания тока (Косса—Стрека), точность которого порядка 10^{-6} Ом·см² [12, 13]. Удельное контактное сопротивление можно определить из измерений полного сопротивления исследуемой структуры омического контакта [13]:

$$R_0 = \frac{\rho_{\pi}}{\pi d} \arctan\left(\frac{4t}{d}\right) + \frac{4R_{\kappa}}{\pi d^2},\tag{1}$$

где $\rho_{\rm II}$ — удельное сопротивление полупроводника, t — его толщина, d — диаметр контакта, ${\rm arctg}(4t/d)$ учитывает растекание тока в полупроводнике.

Для реализации этого метода нужно измерить несколько десятков сопротивлений для разных диаметров и построить график зависимости удельного общего сопротивления структуры от диаметра электрода. Для идеализированного случая это должна быть прямая, которую можно описать уравнением: a=B+Kx, где $a=R_0S$ (здесь S — площадь контакта), x=d/4 аrctg(4t/d). Точка пересечения прямой с осью $y, B=R_{\rm K}$, а тангенс угла наклона прямой $K=\rho_{\rm II}$. Для всех образцов измерения полного контактного сопротивления проводились по двузондовой схеме. Образцы GaAs p-типа, отожженные при 500 и 600 °C с диаметрами 60...120 мкм измерялись по однозондовой схеме.

Результаты измерений и обсуждение. По результатам измерения полного сопротивления омических контактов для диаметра 400 мкм на всех образцах, — проанализированы гистограммы разброса значений R_0 . Оказалось, что исходные образцы обладают большим диапазоном разброса R_0 , чем отожженные образцы — 0,1705...0,2325 Ом. Полученную гистограмму можно описать нормальным законом распределения (Гауссовский закон). Однако среднестатистическое значение и среднее значение R_0 несколько отличаются, а именно