УДК 621.396.677

ЗВЕЗДИНА М. Ю., МАРЧЕНКО С. Н.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА ИМПЕДАНСНОМ КРУГОВОМ ЦИЛИНДРЕ

Приведены соотношения для вычисления характеристик рассеяния радиолокационного объекта, имеющего форму кругового цилиндра, на поверхность которого нанесено покрытие с импедансными свойствами. Коэффициенты матрицы рассеяния получены с использованием импедансных граничных условий. Приведены результаты исследований влияния поверхностного импеданса на характеристики рассеяния кругового цилиндра.

Проектирование и оценка эффективности радиолокационных систем невозможны без априорного знания характеристик рассеяния наблюдаемых объектов, имеющих различную форму, в том числе и кругового цилиндра, на поверхность которого в целях изменения характеристик рассеяния нанесены радиопоглощающие материалы и покрытия. Наиболее эффективным способом получения основного количественного показателя полей рассеяния (эффективной площади рассеяния (ЭПР) δ цели) является моделирование электромагнитного взаимодействия радиоволн с исследуемым объектом на основе строгой электродинамической модели [1, 2]. Несовершенство известных моделей рассеяния электромагнитной волны на импедансных телах [3—4] делают актуальным предлагаемое в статье направление исследований.

Цель статьи — создание математической модели рассеяния электромагнитных полей на анизотропном импедансном круговом цилиндре и проведение исследований влияния параметров импеданса на характеристики рассеяния. При построении предлагаемой математической модели на этапе формализации задачи использовались следующие допущения: процесс является стационарным; тело вдоль образующей однородно и имеет размеры (длину L), намного превышающую длину волны λ поля облучения ($L >> \lambda$), т. е. является протяженным в данном направлении (для таких объектов влиянием торцов цилиндра радиуса a для определенного пространственного сектора можно пренебречь [2]); радиус цилиндра соизмерим с длиной волны; падающая волна в месте расположения объекта является плоской (монохроматической) и имеет определенную поляризацию; амплитуда отраженной волны измеряется на бесконечно большом удалении от рассеивающего объекта.

Предельно допустимое расстояние до объекта, при котором можно не учитывать сферичность волны (применительно к диффракционным задачам данное расстояние соответствует дальней зоне) в зависимости от требуемой точности вычислений определяется условием [1, 2]

$$r_{\min} \ge b L_{\max}^2 / \lambda, \tag{1}$$

где $b = 1, ..., 4; L_{max}$ — наибольший поперечный к направлению распространения волны размер объекта.

С учетом сделанных выше допущений и упрощений матрица погонной ЭПР в поляризационном линейно ортогональном базисе в квазистационарном приближении определяется соотношением [5]

$$\sigma = \begin{bmatrix} \sigma_{\theta\theta} \sigma_{\theta\phi} \\ \sigma_{\phi\theta} \sigma_{\phi\phi} \end{bmatrix}.$$
 (2)

В (2) индексы элементов матрицы σ идентифицируют поляризационный способ локации объекта; а $\chi\xi$ -й элемент матрицы ($\chi, \xi = \theta, \phi$) описывается выражением [4]

$$\sigma_{\chi\xi} = \lim_{r \to \infty} 2\pi r \frac{|E_{\xi}^{sc}|^2}{|E_{\chi}^{in}|^2},\tag{3}$$

где E_{ξ}^{sc} — ξ -компонента рассеянного поля в точке приема $Q(r, \theta, \varphi)$ при возбуждении χ -компоненты поля E_{χ}^{in} в точке источника $P(r_0, \theta_0, \varphi_0)$.

Поляризационный базис путем преобразования координат всегда может быть выбран таким образом, чтобы при построении систем координат источника и приемника ориентации базисов удовлетворяли векторному уравнению локально-плоской волны [1], а падающее и рассеянное поля имели горизонтальную и вертикальную составляющие. В цилиндрической системе координат горизонтальная составляющая поля соответствует ф-компоненте поля, а вертикальная — θ - или *z*-компоненте.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Антифеев В. Н., Борзов А. Б., Быстров Р. П., Исаев И. Ш., Соколов А. В. Математические модели рассеяния электромагнитных волн на объектах сложной формы // Зарубежная радиоэлектроника. Успехи радиоэлектроники, 1998.— № 10.— С. 39—54.

2. Штагер Е. А. Рассеяние радиоволн на телах сложной формы.— М. : Радио и связь, 1986.— 184 с.

3. *Климов А. В., Петров Б. М., Семенихин А. И.* Рассеяние на цилиндре с анизотропным импедансом // Радиоэлектроника.— 1985.— Т. 28.— № 2.— С. 74—78. (Изв. высш. учеб. заведений).

4. *Tenneti C. R.* Plane wave scattering by a corrugated conducting cylinder at oblique incidence // IEEE Trans. AP-36, 1988.— No. 8.— P. 1184—1188.

5. Теоретические основы радиолокации / Под ред. В. Е. Дулевича.— М. : Сов. радио, 1978.— 608 с.

6. Габриельян Д. Д., Звездина М. Ю. Влияние импедансной поверхности кругового цилиндра на диаграмму направленности электрического диполя // Радиотехника и электроника. 2000. Т. 45. № 10. С. 1194—1197.

7. Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган.— М. : Наука, 1979.— 832 с.

8. Халлиулин Д. Я., Третьяков С. А. Обобщенные граничные импедансного типа для тонких плоских слоев различных сред (обзор) // Радиотехника и электроника.— 1998.— Т. 43.— № 4.— С. 16—29.

9. *Марков Г. П., Петров Б. М., Грудинская Г. П.* Электродинамика и распространение радиоволн. М. : Сов. радио, 1979. 241 с.

10. *Терешин О. Н., Седов В. М., Чаплин А. Ф.* Синтез антенн на замедляющих структурах.— М. : Связь, 1980.— 136 с.

г. Ростов-на-Дону.

Поступила в редакцию 10.05.2001.