УДК 631.372.061.2

АЛГОРИТМ РАСЧЕТА ЗНАЧЕНИЙ ЧУВСТВИТЕЛЬНОСТИ ВТОРИЧНЫХ ПАРАМЕТРОВ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ СХЕМ

А. И. ПЕТРЕНКО, В. В. ЛАДОГУБЕЦ, А. И. ЦИРФА

При решении многих задач схемотехнического проектирования, таких как параметрическая оптимизация, анализ и синтез допусков, локализация неисправностей, центрирование области работоспособности, необходимо определять значения чувствительностей выходных характеристик к изменению значений параметров отдельных компонентов электронных схем. Если в качестве выходных характеристик используются токи компонентов или узловые потенциалы схемы, то искомые величины иаходят с помощью хорошо известных алгоритмов моделирования чувствительности [1, 2].

Однако во многих практических случаях для оценки качества функционирования схемы используются вторичные параметры временных характеристик: длительность импульса, время задержки, длительность фронтов импульса и т. д. Процедура определения значений многих из них содержит, как правило, расчет моментов переходов токов или напряжений через заданный уровень на участке возрастания (снизу—вверх) или на участке убывания (сверху—вниз). Поэтому наличие в пакете прикладных программ средств автоматического определения моментов перехода временных характеристик через заданные уровни и значений их чувствительностей к варьированию отдельных компонентов схемы существенно влияет на степень удобства практического использования программных средств.

Пусть электронная схема описывается системой уравнений

$$f(x, x, \xi, t) = 0,$$
 (1)

где $f = [f_1, \dots, f_n]^T$ — нелинейная вектор-функция; $x = [x_1, \dots, x_n]^T$ — вектор неизвестных математической модели (1); $\xi = [\xi_1, \dots, \xi_m]^T$ — вектор варьируемых параметров. Тогда система уравнений, соответствующая i-й модели чувствительности [1] имеет вид

$$\frac{\partial f}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial \xi_i} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi_i} + \frac{\partial f}{\partial \xi_i} = 0.$$
 (2)

Пусть $x_j(t, \xi)$, $\partial x_j(t, \xi)/\partial \xi_i$ — решения систем уравнений (1), (2) для j-го компонента вектора неизвестных; T_0 — момент перехода переменной $x_j(t, \xi)$ через уровень A.

Чувствительность $S^A_{\xi_i}$ момента перехода переменной x_j $(t,\,\xi)$ через уровень A к изменению ξ_i [3] может быть найдена как

$$S_{\xi_i}^A = -\frac{\partial x_j (T_0, \xi)}{\partial \xi_i} / x_j (T_0, \xi). \tag{3}$$

Отметим, что соотношение (3) пригодно для оценки значений $S_{\xi_l}^A$ как при переходе $x_i(t, \xi)$ через уровень A снизу вверх, так и в обратном направлении.

Таким образом, для того чтобы оценить значения $S_{\xi_l}^A$, $i=\overline{1,m}$, достаточно вычислить величины производных $x_j(t,\xi)$ по времени и по ξ_t , $i=\overline{1,m}$ в момент T_0 . Если решать системы уравнений (1), (2) с помощью неявных методов численного интегрирования и знать момент T_0 , то определение этих величин не представляет никакой сложности.

Однако заметим, что информация о $x_j(t,\xi)$ получается в дискретные моменты, поэтому точное определение момента T_0 вызывает затруднение. В то же время точность определения момента перехода T_0 оказывает существенное влияние на погрешности величин $S_{\xi_i}^A$, i=1, m. Будем считать, что на участке, где определяется момент перехода, $x_j(t,\xi)$ изменяется мало, т. е. погрешностью знаменателя формулы (3) можно пренебречь. Рассматривая разложение в ряд Тейлора числителя формулы (3) вблизи точки T_0 и пренебрегая членами высшего порядка, получаем

$$\Delta S_{\xi_l}^A = -\frac{\partial x_j (T_0, \xi) \Delta T_0}{\partial \xi_i x_j (T_0, \xi)}, \tag{4}$$

где $\Delta S^A_{\xi_\ell}$ — погрешность определения искомых чувствительностей; ΔT_0 — погрешность определения момента перехода T_0 .

Таким образом, погрешность $\Delta S_{\xi_i}^A$ линейно зависит от погрешности определения момента T_0 . Поэтому момент перехода переменной $x_j(t,\xi)$ через уровень A должен определяться как можно более точно. Для этого может быть использован следующий алгоритм.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Петренко А. И., Тимченко А. П., Власов А. И. Машинные методы анализа чувствительности линейных и нелинейных электронных цепей.— М.: Машиностроение,

1980.—56 с. 2. Райншке К. Модели надежности и чувствительности систем.— М.: Мир,

2. Гайналь А. Модели надежности и чувствительности систем. Маг. 1978.—452 с.
3. Норенков И. П., Мулярчик С. Г., Иванов С. Р. Экстремальные задачи при схемотехническом проектировании.— Минск: Изд-во БГУ, 1976.—240 с.
4. Подсистема ПРАМ-01 анализа и оптимизации РЭА / А. И. Петренко, А. П. Тимченко, В. В. Ладогубец, В. С. Мачуговский // Теоретические и прикладные вопросы разработки, внедрения и эксплуатации САПР РЭА.— М.: МАИ, 1983.— С. 60—62.

Поступила в редакцию после переработки 25.02.87.