УДК 519.24

РАЗДЕЛЕНИЕ ВЕКТОРНЫХ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ СИГНАЛОВ С ПОМОЩЬЮ МНОГОКАНАЛЬНЫХ АНТЕННО-ПРИЕМНЫХ УСТРОЙСТВ

А. И. КНЯЗЬ

Рассмотрены задачи разделения векторных пространственно-временных радиосигналов с помощью многоканальных антенно-приемных систем, содержащих разнесенные в пространстве или по углам поворота антенные элементы. Использованы критерии обработки типа минимума отношения помеха—сигнал. Исследованы частные случаи обработки.

Введение. Большое число работ посвящено алгоритмам обработки сигналов, поступающих от антенных элементов (АЭ) некоторой антенной системы (АС), причем чаще всего рассматриваются задачи обнаружения и измерения радиолокационных сигналов [1 ... 3].

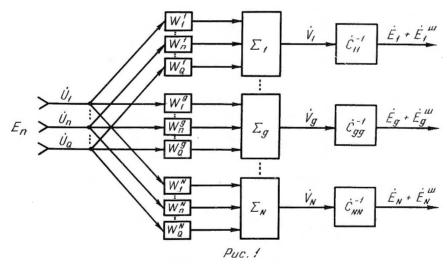
Самостоятельный интерес представляет исследование возможностей использования АС в составе антенно-приемных устройств (АПУ) линейного разделения группового векторного пространственно-временного (ВПВ) [4, 5] радиосигнала. Целью данной работы является рассмотрение обобщенных структурных схем упомянутых АПУ и получение в унифицированном виде соотношений для операций линейного разделения ВПВ сигналов и их частных случаев: векторно-временных, пространственно-временных. Соответствующие алгоритмы первичной (антенной) обработки используют в качестве критерия оптимальности требование помехоподавления, что можно в традициях теории многоканальной связи трактовать как условие минимума межканальных помех.

Разделение ВПВ радиосигналов. Рассматриваем многоканальное АПУ, содержащее АС из АЭ, блоки умножения (взвешивания) сигналов на множители W и сумматоры (рис. 1). Для каждого АЭ имеется некоторая полоса частот, включающая M частот приема квазигармонических сигналов с частотами ω_{μ} (μ =1, 2, ..., M). Векторная комплексная характеристика $\dot{K}^n(i\omega)\dot{\Phi}^n$ приемного АЭ [6] (\dot{K}^n -множитель, зависящий от принятой для $\dot{\Phi}^n$ нормировки) позволяет по комплексным огиба-

ющим $\dot{E}^n_{v\mu}(t)$ напряженностей v-й волны μ -й частоты найти аналитический групповой сигнал $\dot{u_{\Sigma}^n}(t)$ на выходе каждого n-го АЭ $(n=1,2,\dots Q)$

$$\dot{u}_{\Sigma}^{n}(t) = \dot{u}_{n}^{\text{III}}(t) + \sum_{\mu=1}^{M} \dot{K}_{\mu}^{n}(i\omega_{\mu}) e^{i\omega_{\mu}t} \sum_{\nu=1}^{N} \dot{U}_{\nu\mu}^{n}(t);$$
 (1)

$$\dot{U}_{\nu\mu}^{n}(t) = (\dot{\mathbf{\Phi}} \cdot \dot{\mathbf{E}}^{n}) \Big|_{\alpha_{\nu}^{n}, \ \vartheta_{\nu}^{n}}^{0} = \dot{\mathbf{\Phi}}_{\nu\mu}^{n} \dot{\mathbf{q}}_{\nu\mu}^{n} \cdot \dot{e}_{\nu\mu}^{n} \dot{E}_{\nu\mu}^{n}, \tag{2}$$


где N — число принимаемых волн с направлениями прихода, соответствующими в сферических координатах α^n , ϑ^n углам прихода α^n_{ν} , ϑ^n_{ν} , $\dot{u}^{\rm m}_n(t)$ —аналитический шум, характеризуемый средним квадратическим значением

$$(1/T)\int_{-T/2}^{T/2}|\dot{\boldsymbol{u}}_{n}^{\text{iii}}|^{2}dt=U_{\text{iii}}^{2},\quad T\to\infty.$$
(3)

Огибающая входного сигнала $\dot{E}^n_{
u\mu}(t)$ n-го $A \ni$ связана с $\dot{E}^1_{
u\mu}=\dot{E}_{
u\mu}(t)$ для первого АЭ соотношением

$$\dot{E}_{\nu\mu}^{n} = \dot{E}_{\nu\mu}\dot{b}_{\nu\mu}^{n}, \quad n = 1, 2, \dots, Q,$$
 (4)

где $\dot{b}^n_{\rm V\mu}$ — известные или искомые постоянные. Поскольку в состав AC обычно входят AЭ, имеющие фазовые центры, то можно подразделить AC на три класса: локальные, разнесентры, ные, локально-разнесенные. В первом случае расстояния г между фазовыми центрами АЭ соответствуют пренебрежимо малым фазовым сдвигом $(kr \to 0$, где k — волновое число), что характерно для векторных

приемных антенн (ВПА) [7]. Для АС разнесенного типа наблюдается ненулевой фазовый сдвиг $(kr \neq 0)$, что учитывается в фазированных антенных решетках. Совокупность разнесенных ВПА может выступать как АС локально-разнесенного типа. Для локальной АС в (4) следует положить

$$\dot{b}_{\mathbf{v}\mu}^{n} = 1. \tag{5}$$

Взаимное расположение *n*-го и первого АЭ в составе разнесенной АС, а также амплитудно-фазовые соотношения для v-й волны, могут отвечать различным значениям b^n_{vu} . Большой класс задач соответствует

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Антенны и устройства СВЧ / Под ред. Д. И. Воскресенского. — М.: Радио и

связь, 1981.—432 с. 2. Ширман Я. Д., Манжос В. Н. Теория и техника обработки радиолокационной

2. Ширман Я. Д., Манжос В. Н. Теория и техника обработки радиолокационной информации на фоне помех.— М.: Радио и связь, 1981.—416 с.

3. Журавлев А. К., Лукошкин А. П., Поддубный С. С. Обработка сигналов в адаптивных антенных решетках.— Л.: Изд-во ЛГУ, 1983.—240 с.

4. Князь А. И., Каторгин В. А. Классификация учебных институтов связи: Обработка информации в системах связи.— Л.: ЛЭИС, 1985.— С. 23—28.

5. Кловский Д. Д. Передача дискретных сообщений по радиоканалам.— М.: Радио и связь, 1982.—304 с.

6. Марков Г. Т., Сазонов Д. М. Антенны.— М.: Энергия, 1975.—528 с.

7. Князь А. И., Каторгин В. А. Векторные приемные антенны.— Зарубежная радиоэлектроника.— 1984.— № 8.— С. 36—42.

8. Князь А. И. Анализ электромагнитной совместимости радиоэлектронных средств.— Одесса: Изд-е ОЭИС, 1986.—74 с.

Поступила в редакцию после переработки 13.10.86.