УДК 621.391

ВЛИЯНИЕ СЛУЧАЙНОГО РАЗБРОСА ПАРАМЕТРОВ ЭЛЕМЕНТОВ АНТЕННОЙ СИСТЕМЫ НА ТОЧНОСТЬ ОЦЕНИВАНИЯ КООРДИНАТ ТОЧЕЧНОЙ ЦЕЛИ И ИХ ПРОИЗВОДНЫХ

Г. С. НАХМАНСОН

Рассматривается оценка местоположения точечной цели, движущейся в зоне Френеля многопозиционной антенной системы (MAC), при когерентной пространственно-временной обработке принимаемых широкополосных сигналов. Анализируется влияние амплитудных и фазовых характеристик приемных элементов MAC на точность оценивания координат цели и их производных.

Рассмотрим точность оценивания координат цели и их производных, движущейся в зоне Френеля МАС, при когерентной пространственно-временной обработке широкополосных сигналов, принимаемых в условиях воздействия внутренних шумов аппаратуры и мультипликативных помех, обусловленных нестабильностью амплитудных и фазовых характеристик приемных элементов МАС. Используем систему координат $\{R, u, v\}$, где R — длина радиуса-вектора цели; u — $\sin \psi$; ψ — угловое положение цели в плоскости, проходящей через ось OX и радиус-вектор; v — $\sin \theta$; θ — угловое положение цели в плоскости, проходящей через ось OY и радиус-вектор. Приемная МАС представляет совокупность n приемных элементов, имеющих равномерные диаграммы направленности в пределах рабочих секторов угловых координат ψ , θ . Местоположение i-го элемента в декартовой системе координат, связанной с центром МАС, определяется координатами $\{x_i, y_i, z_i\}$. Причем

начало системы координат совмещено с началом системы координат $\{R, u, v\}$.

Зондирующий сигнал $s(t)=\operatorname{Re}\{\dot{s}(t)\}=\operatorname{Re}\{\dot{U}(t)\exp j\omega_0t\}$, где $\dot{U}(t)$ — комплексная огибающая сигнала, излучается из точки $\{x_{\rm H},\ y_{\rm H},\ z_{\rm H}\}$ и переизлучается движущейся точечной целью, находящейся в момент начала облучения t_0 в точке M с координатами $\{R_0,\ u_0,\ V_0\}$. В дальнейшем предполагается, что девиация частоты отраженного от цели сигнала, обусловленная ускоренным движением цели, значительно меньше величины, обратной длительности сигнала, и следовательно, в течение времени облучения цели закон изменения ее координат во времени можно считать равномерным $l_k(t)=l_k+\dot{l}_k(t-t_0),\ l_1=R,\ l_2=u,\ l_3=v\,(l_k^{(p)}=0,\ p\geqslant 2)$ [1].

Учитывая, что сигнал в процессе приема подвергается воздействию аддитивных внутренних шумов аппаратуры и мультипликативных помех, обусловленных разбросом параметров приемных элементов МАС, вектор принимаемых сигналов [2] можно записать в виде

$$||x_i(t)|| = ||a_0s(t, l_0, \varphi_0)|| + n_i(t)||, \quad i = 1, ..., n,$$
 (1)

где φ_0 — случайная начальная фаза, равномерно распределенная на интервале $[0, 2\pi]$; a_0 — случайная амплитуда сигнала, принимаемого элементом MAC, расположенным в точке $\{0, 0, 0\}$, распределенная по закону Рэлея со средним квадратом амплитуды $\langle a_0 \rangle^2$ [3]; $\|n_i(t)\|$ — вектор аддитивного гауссовского шума с нулевым средним значением и матрицей корреляции $\|\langle n_i(t_1)n_i(t_2)\rangle\| = \|(N_0/2)\delta_{ij}\delta(t_1-t_2)\|$, т. е. шум в различных приемных элементах не коррелирован и имеет одинаковую спектральную плотность N_0 . Компоненты вектора полезного сигнала, зависящего от вектора оцениваемых параметров $l = \{R, u, v, R, u, v\}$ — координат цели и их производных в момент t_0 , имеют вид

$$s(t, \boldsymbol{l}, \boldsymbol{\varphi}) = \operatorname{Re} \left\{ \dot{s}(t, \boldsymbol{l}) e^{j\boldsymbol{\varphi}} \right\} = \operatorname{Re} \left\{ \frac{R}{r_i} \dot{I}_i A_i^{1/2} \dot{s} \left[A_i \left(t - \tau_i \right) \right] e^{j\boldsymbol{\varphi}} \right\}, \ i = 1, \dots, n. \quad (2)$$

В (2) $A_i^{1/2}$ — энергетический коэффициент нормировки сигнала [2, 4], обусловленный движением цели:

$$A_i = \left(1 - \frac{1}{c} \frac{r_i \dot{r}_i + r_{\mathrm{u}} \dot{r}_{\mathrm{u}}}{r_i + r_{\mathrm{u}}}\right) \left(1 + \frac{1}{c} \frac{\dot{r}_{\mathrm{u}} \dot{r}_i + \dot{r}_{\mathrm{u}} r_i}{r_i + r_{\mathrm{u}}}\right)^{-1}, \quad \tau_i = \frac{r_{\mathrm{u}} + r_i}{c}$$

— соответственно коэффициент трансформации временного масштаба и время запаздывания сигнала, принимаемого i-м элементом MAC; r_i , r_i — расстояние от цели до i-го приемного элемента MAC и производная по времени от этого расстояния, определяемые в момент t_0 :

$$r_{i} = \{R^{2} + x_{i}^{2} + y_{i}^{2} + z_{i}^{2} - 2R \left[x_{i}u + y_{i}v + z_{i} (1 - u^{2} - v^{2})^{1/2}\right]\}^{1/2};$$
(3)

$$\dot{r}_{i} = r_{i}^{-1} \left\{ \dot{R} \left[R - x_{i}u - y_{i}v - z_{i} (1 - u^{2} - v^{2})^{1/2}\right] - R \left[x_{i}\dot{u} + y_{i}\dot{v} - z_{i} \frac{\dot{u}\dot{u} + v\dot{v}}{(1 - u^{2} - v^{2})^{1/2}}\right] \right\};$$

 $r_{\rm H}$, $r_{\rm H}$ — расстояние от цели до местоположения излучателя зондирующих сигналов и производная по времени от этого расстояния, определяемые выражениями (3) при замене координат приемного элемента $\{x_i,y_i,z_i\}$ на координаты излучателя $\{x_{\rm H},y_{\rm H},z_{\rm H}\}$; i_i — случайная апертурная

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Ширман Я. Д. Разрешение и сжатие сигналов.— М.: Сов. радио.— 1974.—356 с. 2. Нахмансон Γ . С. Оценка местоположения движущейся цели радиолокационны-
- ми методами при использовании широкополосных сигналов // Радиоэлектроника.— 1986.— № 5.— С. 39—46. (Изв. высш. учеб. заведений).

 3. Тихонов В. И. Оптимальный прием сигналов.— М.: Радио и связь.— 1983.— 319 с.
- 4. Sibul L. H., Titlebaum E. L. Volume properties for the wideband ambiquity function // IEEE transactions: AES-17.—1981.— No. 1.— Р. 83—86.
 5. Куликов Е. И., Трифонов А. П. Оценка параметров сигнала при наличии помех.— М.: Сов. радио.—1968.—293 с.
 6. Фалькович С. Е., Хомяков Э. Н. Статистическая теория измерительных радиосистем.— М.: Радио и связь.—1984.—320 с.

Поступила в редакцию после переработки 27.10.86.