Компактная многодиапазонная антенна с CPW питанием для систем связи 5G

Автор(и)

DOI:

https://doi.org/10.20535/S0021347021080057

Ключові слова:

антенна 5G, круговая поляризация, FSS, канал с сосредоточенными параметрами, возвратные потери, U-образная щель

Анотація

В статье предложена многодиапазонная антенна с копланарным волноводным питанием для Wi-Fi и 5G приложений. Для получения требуемых частот в работе использовался инновационный метод, включающий в себя использование полос частотного сдвига FSS (frequency shifting strips) и U-образной щели. Для моделирования спроектированной антенны использовано программное обеспечение ANSYS HFSS, где моделирование электромагнитного поля выполнялось методом конечных элементов FEM (finite elements method). Разработанная антенна предназначена для работы в диапазонах частот 5G: 28, 35 и 37 ГГц с максимальным усилением 11,61 дБ и коэффициентом полезного действия 92%. Для проверки эффективности моделированного проекта результаты сравнивались с результатами измерений. В данной работе проведено сравнение характеристик предлагаемой антенны с характеристиками других существующих антенн. В работе представлена информация об усилении антенны, КСВН, распределениях поля, ширине полосы, распределениях поверхностного тока (поля E и H), и других характеристиках разработанной антенны.

Посилання

J. Rendon Schneir et al., “A business case for 5G mobile broadband in a dense urban area,” Telecommun. Policy, vol. 43, no. 7, p. 101813, 2019, doi: https://doi.org/10.1016/j.telpol.2019.03.002.

C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,” IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, 2002, doi: https://doi.org/10.1109/TIT.2002.802612.

S. Catreux, V. Erceg, D. Gesbert, R. W. Heath, “Adaptive modulation and MIMO coding for broadband wireless data networks,” IEEE Commun. Mag., vol. 40, no. 6, pp. 108–115, 2002, doi: https://doi.org/10.1109/MCOM.2002.1007416.

G. F. Khodae, J. Nourinia, C. Ghobadi, “A practical miniaturized U-slot patch antenna with enhanced bandwidth,” Prog. Electromagn. Res. B, vol. 3, pp. 47–62, 2008, doi: https://doi.org/10.2528/PIERB07112201.

M. S. Sharawi, S. K. Podilchak, M. T. Hussain, Y. M. M. Antar, “Dielectric resonator based MIMO antenna system enabling millimetre‐wave mobile devices,” IET Microwaves, Antennas Propag., vol. 11, no. 2, pp. 287–293, 2017, doi: https://doi.org/10.1049/iet-map.2016.0457.

H. Choo, H. Ling, “Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm,” IEE Proc. - Microwaves, Antennas Propag., vol. 150, no. 3, p. 137, 2003, doi: https://doi.org/10.1049/ip-map:20030291.

S. F. Jilani, A. Alomainy, “Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks,” IET Microwaves, Antennas Propag., vol. 12, no. 5, pp. 672–677, 2018, doi: https://doi.org/10.1049/iet-map.2017.0467.

S. Jiwasurat, G. Kesidis, “A class of shaped deficit Round-Robin (SDRR) schedulers,” Telecommun. Syst., vol. 25, no. 3/4, pp. 173–191, 2004, doi: https://doi.org/10.1023/B:TELS.0000014780.33289.ad.

A. Ittibipoon, R. K. Mongia, M. Cuhaci, “Low profile dielectric resonator antennas using a very high permittivity material,” Electron. Lett., vol. 30, no. 17, pp. 1362–1363, 1994, doi: https://doi.org/10.1049/el:19940924.

H. R. Stuart, S. R. Best, A. D. Yaghjian, “Limitations in relating quality factor to bandwidth in a double resonance small antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 460–463, 2007, doi: https://doi.org/10.1109/LAWP.2007.905018.

Y. Shi, Y. Fan, Y. Li, L. Yang, M. Wang, “An efficient broadband slotted rectenna for wireless power transfer at LTE band,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 814–822, 2019, doi: https://doi.org/10.1109/TAP.2018.2882632.

M. S. Alam, M. T. Islam, N. Misran, “A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement,” Prog. Electromagn. Res., vol. 130, pp. 389–409, 2012, doi: https://doi.org/10.2528/PIER12060702.

J. Borah, T. A. Sheikh, S. Roy, “Miniaturization of a CPW-fed dual-band antenna for GSM 1800/1900 and WLAN 5 GHz applications,” Trans. Electr. Electron. Mater., vol. 18, no. 2, pp. 119–123, 2017, doi: https://doi.org/10.4313/TEEM.2017.18.2.119.

J. Borah, T. A. Sheikh, S. Roy, “Compact CPW-fed tri-band antenna with a defected ground structure for GSM, WLAN and WiMAX applications,” Radioelectron. Commun. Syst., vol. 59, no. 7, pp. 319–324, 2016, doi: https://doi.org/10.3103/S0735272716070050.

M. Ali, T. Sittironnarit, H.-S. Hwang, R. A. Sadler, G. J. Hayes, “Wide-band/dual-band packaged antenna for 5–6 GHz WLAN application,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 610–615, 2004, doi: https://doi.org/10.1109/TAP.2004.823992.

S. S. Huang, J. Li, J. Z. Zhao, “Compact CPW-fed tri-band antenna for WLAN/WIMAX applications,” Prog. Electromagn. Res. C, vol. 49, pp. 39–45, 2014, doi: https://doi.org/10.2528/PIERC14030501.

K. M. Mak, H. W. Lai, K. M. Luk, “A 5G wideband patch antenna with antisymmetric L-shaped probe feeds,” IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 957–961, 2018, doi: https://doi.org/10.1109/TAP.2017.2776973.

H. A. Diawuo, Y.-B. Jung, “Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1286–1290, 2018, doi: https://doi.org/10.1109/LAWP.2018.2842242.

I. Syrytsin, S. Zhang, G. F. Pedersen, A. S. Morris, “Compact quad-mode planar phased array with wideband for 5G mobile terminals,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4648–4657, 2018, doi: https://doi.org/10.1109/TAP.2018.2842303.

C.-X. Mao, M. Khalily, P. Xiao, T. W. C. Brown, S. Gao, “Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications,” IEEE Trans. Antennas Propag., vol. 67, no. 1, pp. 160–168, 2019, doi: https://doi.org/10.1109/TAP.2018.2874796.

W. Wang, X. Liu, Y. Wu, Y. Liu, “A broadband filtering patch antenna using T-probe, transverse stubs, and U-slots,” IEEE Access, vol. 7, pp. 7502–7509, 2019, doi: https://doi.org/10.1109/ACCESS.2018.2889743.

Q. Chen et al., “Single ring slot-based antennas for metal-rimmed 4G/5G smartphones,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1476–1487, 2019, doi: https://doi.org/10.1109/TAP.2018.2883686.

M. Naser-Moghadasi, R. Sadeghzadeh, L. Asadpor, B. S. Virdee, “A small dual-band CPW-fed monopole antenna for GSM and WLAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 508–511, 2013, doi: https://doi.org/10.1109/LAWP.2013.2256456.

J. Bang, J. Choi, “A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 6, pp. 1118–1122, 2018, doi: https://doi.org/10.1109/LAWP.2018.2836196.

Прототип предлагаемой антенны с U-образной щелью для 5G

Опубліковано

2021-10-15 — Оновлено 2021-10-15

Як цитувати

Мукерджи, К., Мукхопадхьяй, С., & Рой, С. (2021). Компактная многодиапазонная антенна с CPW питанием для систем связи 5G. Вісті вищих учбових закладів. Радіоелектроніка, 64(8), 514–524. https://doi.org/10.20535/S0021347021080057

Номер

Розділ

Статті