Открытый доступ Открытый доступ  Ограниченный доступ Доступ по подписке
Схема на ТИУ с минимальным числом компонентов

Четыре новых генератора на базе трансимпедансного усилителя

П. Чандра Шакер, А. Сринивасулу

Аннотация


В статье представлены четыре новых генератора сигналов синусоидальной формы, построенные на базе трансимпедансного усилителя (ТИУ). Первая предложенная схема представляет собой генератор с одним ТИУ и небольшим количеством пассивных компонентов. Вторая и третья предложенные схемы содержат один ТИУ и несколько пассивных компонентов, среди которых два пассивных элемента соединены с общим проводом. В этих схемах контроль условия генерации и частоты генерируемого сигнала осуществлен независимо. Четвертая схема представляет собой квадратурный генератор с двумя ТИУ в качестве активных элементов и несколько внешних пассивных элементов для генерации колебаний. Для реализации предложенных схем в лабораторных условиях выбрана ИС AD 844 AN с внешними пассивными компонентами. Результаты компьютерного моделирования с помощью программы SPICE и результаты лабораторных испытаний представлены для подтверждения теоретического анализа предложенных схем.

Ключевые слова


трансимпедансный усилитель; операционный усилитель с токовой обратной связью; разработка аналоговых интегральных схем; генератор в режиме тока; генератор синусоидального сигнала

Полный текст:

PDF

Литература


Budak, A. Passive and Active Network Analysis and Synthesis. Houghton Mifflin, Boston, 1974.

Soliman, Ahmed M.; Al-Shamaa, Mohammed H.; Al-Bab, Dak, Mohammed. Active compensation of RC oscillators. Frequenz. — 1988. — Vol. 42, No. 11–12. — P. 325–332. — DOI : http://dx.doi.org/10.1515/FREQ.1988.42.11-12.325.

Bolton, W. Measurement and Instrumentation Systems. Newnes, Oxford, UK, 1996.

Gibson, J. D. The Communications Handbook. CRC Press, Boca Raton, Fla, USA, 1997.

Soliman, Ahmed M. Simple sinusoidal active RC oscillators. Int. J. Electron. — 1975. — Vol. 39, No. 4. — P. 455–458. — DOI : http://dx.doi.org/10.1080/00207217508920504.

Chang, C.-M. Novel current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electron. Lett. — Feb. 1994. — Vol. 30, No. 3. — P. 181–183. — DOI : http://dx.doi.org/10.1049/el:19940133.

Horng, Jiun-Wei; Hou, Chun-Li; Chang, Chun-Ming; Chung, Wen-Yaw; Tang, Han-Wei; and Wen, Yao-Hsin. Quadrature oscillators using CCIIs. Int. J. Electron. — 2005. — Vol. 92, No. 1. — P. 21–31. — DOI : http://dx.doi.org/10.1080/00207210412331332899.

Srinivasulu, Avireni. A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory and Applications. — Jun. 2010. — Vol. 39, No. 6. — P. 679–686. — DOI : http://dx.doi.org/10.1002/cta.669.

Abuelma’atti, M. T.; Al-Ghumaiz, A. A.; Khan, M. H. Novel CCII-based single-element controlled oscillators employing grounded resistors and capacitors. Int. J. Electron. — 1995. — Vol. 78, No. 6. — P. 1107–1112. — DOI : http://dx.doi.org/10.1080/00207219508926235.

Pal, Dipankar; Srinivasulu, Avireni; Pal, Basab Bijoy; Demosthenous, Andreas; Das, Barda Nand. Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Trans. Instrum., Meas. — Jul. 2009. — Vol. 58, No. 7. — P. 2174–2180. — DOI : http://dx.doi.org/10.1109/TIM.2008.2006729.

Liu, Shen-Iuan. Single-resistance-controlled/ voltage-controlled oscillator using current conveyors and grounded capacitors. Electron. Lett. — Mar. 1995. — Vol. 31, No. 5. — P. 337–338. — DOI : http://dx.doi.org/10.1049/el:19950259.

Soliman, Ahmed M. Current mode CCII oscillators using grounded capacitors and resistors. Int. J. Circuit Theory and Applications. — 1998. — Vol. 26, No. 5. — P. 431–438. — DOI : http://dx.doi.org/10.1002/(SICI)1097-007X(199809/10)26:5::AID-CTA213.0.CO.

Bhaskar, D. R.; Gupta, S. S.; Senani, R.; and Singh, A. K. New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integr. Circ. Signal Process. — Oct. 2012. — Vol. 73, No. 1. — P. 427–437. — DOI : http://dx.doi.org/10.1007/s10470-012-9896-6.

Martinez, P. A.; Sabadell, J.; Aldea, C. Grounded resistor controlled sinusoidal oscillator using CFOAs. Electron. Lett. — 1997. — Vol. 33, No. 5. — P. 346–348. — DOI : http://dx.doi.org/10.1049/el:19970229.

Srivastava, D. K.; Singh, V. K.; Senani, R. New very low frequency oscillator using only a single CFOA. American Journal of Electrical and Electronic Engineering. — 2015. — Vol. 3, No. 1. — P. 1–3. — DOI : http://dx.doi.org/10.12691/ajeee-3-1-1.

Lahiri, Abhirup. New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoid generator. Active and Passive Electronic Components. — 2011. — Vol. 2011. — P. 1–8. — DOI : http://dx.doi.org/10.1155/2011/274394.

Rodriguez-Vazquez, A.; Linares-Barranco, B.; Huertas, J. L.; and Sanchez-Sinencio, E. On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans. Circuits Syst. — Feb. 1990. — Vol. 37, No. 2. — P. 198–211. — DOI : http://dx.doi.org/10.1109/31.45712.

Tao, Yufei; Fidler, J. K. Electronically tunable dual-OTA second-order sinusoidal oscillators/filters with non-interacting controls: a systematic synthesis approach. IEEE Trans. Circuits Syst. — Feb. 2000. — Vol. 47, No. 2. — P. 117–129. — DOI : http://dx.doi.org/10.1109/81.828566.

Prommee, Pipat; and Dejhan, Kobchai. An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. Int. J. Electronics. — 2002. — Vol. 89, No. 5. — P. 365–379. — DOI : http://dx.doi.org/10.1080/713810385.

Ahmed, M. T.; Khan, I. A.; and Minhaj, N. On transconductance-C quadrature oscillators. Int. J. Electronics. — 1997. — Vol. 83, No. 2. — P. 201–208. — DOI : http://dx.doi.org/10.1080/002072197135526.

Liu, Shen-Iuan. Single-resistance-controlled sinusoidal oscillator using two FTFNs. Electron. Lett. — 1997. — Vol. 33, No. 14. — P. 1185–1186. — DOI : http://dx.doi.org/10.1049/el:19970833.

Abuelma’atti, M. T.; Al-Zaher, H. A. Current-mode sinusoidal oscillators using single FTFN. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. — Jan. 1999. — Vol. 46, No. 1. — P. 69–74. — DOI : http://dx.doi.org/10.1109/82.749100.

Singh, V. Equivalent forms of dual-OTA RC oscillators with application to grounded-capacitor oscillators. IEE Proceedings: Circuits, Devices and Systems. — Apr. 2006. — Vol. 153, No. 2. — P. 95–99. — DOI : http://dx.doi.org/10.1049/ip-cds:20050099.

Chiu, W.; Liu, S.-I.; Tsao, H.-W.; Chen, J.-J. CMOS differential difference current conveyors and their applications. IEE Proceedings: Circuits, Devices and Systems. — Apr. 1996. — Vol. 143, No. 2. — P. 91–96. — DOI : http://dx.doi.org/10.1049/ip-cds:19960223.

Kumngern, M.; Dejhan, K. DDCC-based quadrature oscillator with grounded capacitors and resistors. Active and Passive Electronic Components. — 2009. — Vol. 2009. — P. 1–4. — DOI : http://dx.doi.org/10.1155/2009/987304.

Kuntman, H.; Özpinar, A. On the realization of DO-OTA-C oscillators. Microelectron. J. — Dec. 1998. — Vol. 29, No. 12. — P. 991–997. — DOI : http://dx.doi.org/10.1016/S0026-2692(98)00063-9.

Özcan, S.; Toker, A.; Acar, C.; Kuntman, H.; and Çiçekoģlu, O. Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron. J. — Mar. 2000. — Vol. 31, No. 3. — P. 169–174. — DOI : http://dx.doi.org/10.1016/S0026-2692(99)00113-5.

Horng, J.-W. Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors. IEICE Trans. Fund. Elec., Commun. Computer Sci. — 2002. — Vol. E85-A, No. 6. — P. 1416–1419. — URL : http://search.ieice.org/bin/summary.php?id=e85-a_6_1416.

Salama, K. N.; Soliman, A. M. CMOS operational transresistance amplifier for analog signal processing applications. Microelectron. J. — Mar. 1999. — Vol. 30, No. 3. — P. 235–245. — DOI : http://dx.doi.org/10.1016/S0026-2692(98)00112-8.

Chen, J.-J.; Tsao, H.-W.; Chen, C.-C. Operational transresistance amplifier using CMOS technology. Electron. Lett. — 1992. — Vol. 28, No. 22. — P. 2087–2088. — DOI : http://dx.doi.org/10.1049/el:19921338.

Lo, Yu-Kang; Chien, Hung-Chun. Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans. Circuits Syst. II: Express Briefs. — Dec. 2007. — Vol. 54, No. 12. — P. 1110–1114. — DOI : http://dx.doi.org/10.1109/TCSII.2007.905879.

Toker, A.; Ozoguz, S.; Cicekoglu, O.; Acar, C. Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q band pass filter configuration. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. — Sep. 2000. — Vol. 47, No. 9. — P. 949–954. — DOI : http://dx.doi.org/10.1109/82.868465.

Lo, Y.-K.; Chien, H.-C. Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circuits Devices Syst. — Jun. 2007. — Vol. 1, No. 3. — P. 257–261. — DOI : http://dx.doi.org/10.1049/iet-cds:20060359.

Salama, K. N.; Soliman, A. M. Novel oscillators using the operational transresistance amplifier. Microelectron. J. — Jan. 2000. — Vol. 31, No. 1. — P. 39–47. — DOI : http://dx.doi.org/10.1016/S0026-2692(99)00087-7.

Çam, U. A. A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integrated Circuits and Signal Processing. — Aug. 2002. — Vol. 32, No. 2. — P. 183–186. — DOI : http://dx.doi.org/10.1023/A:1019586328253.

Chien, Hung-Chun. New realizations of single OTRA-based sinusoidal oscillators. Active and Passive Electronic Components. — 2014. — Vol. 2014. — P. 1–12. — DOI : http://dx.doi.org/10.1155/2014/938987.

Gupta, Ashish; Senani, Raj; Bhaskar, D. R.; Singh, A. K. OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst. Signal Process. — Apr. 2012. — Vol. 31, No. 2. — P. 489–499. — DOI : http://dx.doi.org/10.1007/s00034-011-9345-2.

Pandey, R.; Pandey, N.; Kumar, R.; Solanki, G. A novel OTRA based oscillator with non interactive control. Proc. of Int. Conf. on Computer and Communication Technology. — 17–19 Sept. 2010. — P. 658–660. — IEEE, 2010. — DOI : http://dx.doi.org/10.1109/iccct.2010.5640448.

Pandey, R.; Bothra, M. Multiphase sinusoidal oscillators using operational trans-resistance amplifier. Proc. of IEEE Symp. on Industrial Electronics and Applications, 4–6 Oct. 2009. — IEEE, 2009. — P. 371–376. — DOI : http://dx.doi.org/10.1109/isiea.2009.5356432.

Pandey, R.; Pandey, N.; Komanapalli, G.; and Anurag, R. OTRA based voltage mode third order quadrature oscillator. ISRN Electronics. — 2014. — Vol. 2014. — P. 1–5. — DOI : http://dx.doi.org/10.1155/2014/126471.

Srinivasulu, A.; and Shaker, P. Chandra. Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans. Circuits Syst. — 2014. — Vol. 13. — P. 145–152. — URL : http://www.wseas.org/multimedia/journals/circuits/2014/a145701-253.pdf.

Shaker, P. Chandra; and Srinivasulu, A. A sinusoidal oscillator using single operational transresistance amplifier. Proc. of IEEE Int. Conf. on Advance Computing, ICoAC, 18–20 Dec. 2013. — IEEE, 2013. — P. 508–511. — DOI : http://dx.doi.org/10.1109/ICoAC.2013.6922003.

Shaker, P. Chandra; and Srinivasulu, Avireni. Quadrature oscillator using operational transresistance amplifier. Proc. of IEEE Int. Conf. on Applied Electronics, 9–10 Sept. 2014, Pilsen, Czech Republic. — IEEE, 2014. — P. 117–120. — DOI : http://dx.doi.org/10.1109/AE.2014.7011681.

Chen, J.-J.; Tsao, H.-W.; Liu, S.-I.; Chiu, W. Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proceedings: Circuits, Devices and Systems. — Jun. 1995. — Vol. 142, No. 3. — P. 186–192. — DOI : http://dx.doi.org/10.1049/ip-cds:19951950.

Analog Devices Inc, AD844AN (datasheet), http://www.analog.com/static/imported-files/data_sheets/AD844.pdf.




DOI: https://doi.org/10.20535/S0021347017050028

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM

Ссылки

  • На текущий момент ссылки отсутствуют.





© Известия высших учебных заведений. Радиоэлектроника, 2004–2017
При копировании активная ссылка на материал обязательна
ISSN 2307-6011 (Online), ISSN 0021-3470 (Print)
т./ф. +38044 204-82-31, 204-90-41
Условия использования сайта